

.....

QP CODE: 21000414

Reg No :

Name

M Sc DEGREE (CSS) EXAMINATION, MARCH 2021

Third Semester

Faculty of Science
M Sc PHYSICS

CORE - PH010301 - QUANTUM MECHANICS-II

2019 Admission Onwards FA27F923

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Write and explain the interaction term in the Helium atom hamiltonian.
- 2. Write down the quantization conditions obtained from WKB method in problems with one infinite vertical wall and two infinite vertical walls.
- 3. Briefly discuss how WKB method can be used to analyze alpha decay problem.
- 4. Write down Dyson series expansion for the time evolution operator in interaction picture and explain terms therein.
- 5. Plot the probability for transition of a system between two of its energy levels E_1 and E_2 under a constant perturbation applied for time t as a function of energy difference $(E_2 E_1)$.
- 6. What are symmetric and antisymmetric wave functions?
- 7. What is scattering amplitude?
- 8. Write down the expression for the scattering amplitude in Born approximation and express the scattering cross section in the approximation.
- 9. Does Schrodinger's equation have the same form for all inertial observers? Give reason.
- 10. Find the traces of the Dirac matrices (α, β) .

(8×1=8 weightage)

Turn Over

Page 1/3

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. A system with hamiltonian H_0 has two eigenstates $|1\rangle$ and $|2\rangle$ with same energy value E. This system is perturbed by a hamiltonian $H'=\epsilon |1\rangle\langle 2|-4\epsilon |2\rangle\langle 1|$ where ϵ is a constant with dimensions of energy. Find the first order correction to the states $|1\rangle$ and $|2\rangle$.
- 12. Using Gaussian $\psi(x)=\left(\frac{2b}{\pi}\right)^{\frac{1}{4}}e^{-bx^2}$ trial wavefunction estimate the ground state energy of a particle in a potential $V(x)=-\alpha \ x^4$ where α is a constant.

(Given :
$$\int\limits_0^\infty dx\; x^2 e^{-2bx^2} = -rac{1}{2}rac{d}{db}\int\limits_0^\infty dx\; e^{-2bx^2}$$
)

- 13. Find how the energy eigen values of a Half harmonic oscillator depend on the quantum number n using WKB method?
- 14. Compare Schrodinger, Heisenberg and interaction pictures.
- 15. What is electric dipole approximation. How this approximation simplify the expression for absorption cross section in the interaction of atom with classical electromagnetic field.
- 16. Use Born approximation to obtain differential scattering cross section when a particle moves in the potential $V(r)=-V_0exp(\frac{-r}{r_0})$ where V_0 and r_0 are positive constants. Given

$$\int\limits_{0}^{\infty} dr \, r \, e^{-ar} \sin b r \, = rac{2ab}{(a^2+b^2)^2}.$$

- 17. Calculate the scattering cross section for the Yukawa potential $V(r)=V_0\frac{e^{-\alpha r}}{r}$ where V_0 and α are constants. Show that for $\alpha\to 0$, cross section $\sigma(\theta)$ corresponds to that of Rutherford scattering.
- 18. Show that positive and negative energy solutions of Dirac equation with same momentum \mathbf{p} are orthogonal.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Discuss the time independent perturbation theory and obtain expressions for first order correction in wavefunction.
- 20. Derive an expression for absorption cross-section for a system in which an atomic electron interacts with classical electromagnetic fields

- 21. Apply the method of partial waves to study the scattering of a particle by a hard sphere and show that (i) For incident particles of low energy, the s-wave scattering is predominant. (ii) For large energy incident particles, the total scattering cross section is half of that for low energy particles.
- 22. Show that orbital angular momentum ${\bf L}$ will not be conserved for a free Dirac particle. Show further that total angular momentum ${\bf L}+{\bf S}$ will be conserved where ${\bf S}=\frac{1}{2}\hbar\begin{bmatrix}{\pmb \sigma}&0\\0&{\pmb \sigma}\end{bmatrix}$ is the spin vector.

(2×5=10 weightage)

