



| Reg. No |
|---------|
| Name    |

# M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2021

## Third Semester

Faculty of Science

Branch II—Physics-A-Pure Physics

# PH 3C 10—COMPUTATIONAL PHYSICS

(2012—2018 Admissions)

Time: Three Hours Maximum Weight: 30

### Part A

Answer any **six** questions. Weight 1 each.

- 1. What is the condition of convergence and order of convergence of Newton-Raphson method?
- 2. What is the nature of  $n^{\text{th}}$  divided difference of a polynomial of  $n^{\text{th}}$  degree?
- 3. Define cubic spline which is commonly used for interpolation.
- 4. Obtain the formulae for numerical integration using Trapezoidal and Simpson's rules.
- 5. Find the polynomial which takes the following values:

x : 0 1 2y : 1 2 1

- 6. What are the errors in numerical differentiation?
- 7. Write note on Euler's method.
- 8. Find the numerically large eigen value of matrix  $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$  by power method.
- 9. State standard five points finite difference formula for solving  $u_{xx} + u_{yy} = 0$ .
- 10. Write note on Crank-Nicholson method.

 $(6 \times 1 = 6)$ 

Turn over





#### Part B

# Answer any **four** questions. Weight 2 each.

- 11. Using Lagrange's interpolation formula, express the function  $\frac{x^2 + x 3}{x^3 2x^2 x + 2}$  as sum of partial fractions.
- 12. Evaluate  $\int_{0}^{1} \int_{0}^{1} e^{x+y} dxdy$  using Trapezoidal and Simpson's rules.
- 13. Given that  $\frac{dy}{dx} = \frac{1}{2} \left( 1 + x^2 \right) y^2$ ; y(0) = 1; y(0.1) = 1.06, y(0.2) = 1.12 and y(0.3) = 1.21. Evaluate y(0.4) and y(0.5) by Milne's predictor-corrector method.
- 14. Given, y'' + xy' + y = 0, y(0) = 1 and y'(0) = 0. Find the value of y(0.1) using Runge-Kutta method of fourth order.
- 15. Find the solution, to three decimals, of the system

$$83x + 11y - 4z = 95$$
$$7x + 52y + 13z = 104$$
$$3x + 8y + 29z = 71.$$

Using Jacobi and Gauss-Seidel methods.

16. Solve, by Euler's method, the equation  $\frac{dy}{dx} = x + y$ , y(0) = 0. Choose h = 0.2 and compute y(0.4) and y(0.6).

 $(4 \times 2 = 8)$ 





## Part C

# Answer **all** questions. Weight 4 each.

17. (a) Explain the least square method for fitting a straight line and power curve.

Or

- (b) Derive Newton's forward and backward interpolation formulae.
- 18. (a) Starting from the general formula for numerical integration, obtain Trapezoidal and Simpson's rules.

Or

- (b) Write an essay on Gaussian integration method.
- 19. (a) Explain the predictor-corrector methods for the numerical solution of ordinary differential equations.

Or

- (b) Explain Gauss elimination method to find the inverse of a matrix with an example.
- 20. (a) Solve  $\nabla^2 u = 8x^2y^2$  for square mesh dividing the square into 16 sub-squares of length 1 unit. Given, u = 0 at the four boundaries.

Or

(b) Explain Schmidt method and weighted average implicit method for the numerical solution of partial differential equations.

 $(4 \times 4 = 16)$ 

