

G 18001030

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2018

Fourth Semester

Faculty of Science

Branch I (A): Mathematics

MT 04 C16—SPECTRAL THEORY

(Programme-Core-Common for all)

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Suppose (x_n) is a sequence in a normed space X such that $x_n \xrightarrow{w} x$. Show that the weak limit x of (x_n) is unique.
- 2. Suppose $T:[1,\infty) \to [1,\infty)$ defined by $Tx = x + \frac{1}{x}$. Show that |Tx Ty| < |x y| when $x \neq y$, but the mapping has no fixed point.
- 3. Find eigenvalues and eigenvectors of $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 4. Let X be a complex Banach space. Let S and $T \in B\left(X,X\right)$. Then show that $R_{\mu} R_{\lambda} = \left(\mu \lambda\right) R_{\mu} R_{\lambda}, \lambda, \mu \in \rho\left(T\right).$
- 5. Define compact linear operator. Let X and Y be normed spaces. Prove that every compact linear operator $T: X \to Y$ is bounded.
- 6. Let X and Y be normed spaces and let $T: X \to Y$ be a compact linear operator. Prove that the range $\mathcal{R}(T)$ is separable.

Turn over

G 18001030

- 7. Let $T: H \to H$ be a bounded self adjoint linear operator on a complex Hilbert space H. Then prove that all the eigen values of T (if they exists) are real.
- 8. Let P_1 and P_2 be projections of a Hilbert space H onto Y_1 and Y_2 , respectively, and $P_1P_2=P_2P_1$. Show that $P_1+P_2-P_1P_2$ is a projection of H onto Y_1+Y_2 .

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Let X be a normed space. Prove that $x_n \xrightarrow{w} x$ if and only if :
 - (i) The sequence $\|(x_n)\|$ is bounded.
 - (ii) For every element f of a total subset $M \subset X'$ we have $f(x_n) \to f(x)$.
- 10. Let X and Y be two normed spaces. On the product space $X \times Y$ define:
 - (a) $\|(x, y)\| = \|x\| + \|y\|$ and
 - (b) $\|(x, y)\| = \max\{\|x\|, \|y\|\}$

Verify that (i) and (ii) are norms in $X \times Y$.

- 11. State and prove Banach fixed point theorem.
- 12. Prove that all matrices representing a given linear operator $T: X \to X$ on a finite dimensional normed space X relative to various bases for X have the same eigen values.
- 13. Prove that the spectrum $\sigma(T)$ of a bounded linear operator T on a complex Banach space is closed.
- 14. Show that for any operator $T \in B(X, X)$ on a complex Banach space $X, r_{\sigma}(\alpha T) = \alpha r_{\sigma}(T)$, and $r_{\sigma}(T^k) = \left[r_{\sigma}(T)\right]^k (k \in \mathbb{N})$ where r_{σ} denotes the spectral radius.
- 15. Let T be linear operator defined on all of a complex Hilbert space H and satisfies $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in H$. Prove that T is bounded.

G 18001030

16. Prove that a bounded linear operator $P: H \to H$ on a Hilbert space H is a projection if and only if P is self adjoint and idempotent.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. State and prove open mapping theorem.
- 18. State and prove spectral mapping theorem for polynomials.
- 19. Let B be a subset of metric space X. Then prove that:
 - (i) If B is relatively compact, B is totally bounded.
 - (ii) If B is totally bounded and X is complete, B is relatively compact.
 - (iii) If B is totally bounded, for every c > 0 it has finite c-net. $M_c \subset B$.
 - (iv) If B is totally bounded, B is separable.
- 20. (i) Prove that the set of eigenvalues of a compact linear operator $T: X \to X$ on a normed space X is countable and the only possible point of accoumulation is $\lambda = 0$.
 - (ii) Let $T: X \to X$ be a compact linear operator and $S: X \to X$ a bounded linear operator on a normed space. Then prove that ST and TS are compact.
- 21. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space H. Prove that a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a c > 0 such that for every $x \in H$, $\|T_{\lambda} x\| \ge c \|x\|$, $(T_{\lambda} = T \lambda I)$.
- 22. Let H be a Hilbert space. Let $\mathbf{P}_{1},\,\mathbf{P}_{2}$ be projections on H. Prove that :
 - (i) $P = P_1P_2$ is a projection H if and only if the projections P_1 and P_2 commutes. Then P projects H onto $Y = Y_1 \cap Y_2$, where $Y_i = P_i(H)$, i = 1, 2.
 - (ii) Two closed subspaces Y and V of H are orthogonal if and only if the corresponding projections satisfy $P_Y P_V = 0$.
 - (iii) The sum $P = P_1 + P_2$ is a projection on H if and only if $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal.

 $(3 \times 5 = 15)$

