

QP CODE: 20000683

13

Reg No :

Name :

MSc DEGREE (CSS) EXAMINATION , NOVEMBER 2020 Second Semester

M Sc PHYSICS

CORE - PH010203 - STATISTICAL MECHANICS

2019 Admission Onwards BB74DED3

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. How do you represent a microstate for an N particle system in classical phase space?
- 2. Calculate the number of microstates g(p)dp for a free particle confined to a volume V whose momentum is lying in between p and p+dp.
- 3. "Energy fluctuations of the systems are related to the ability of the system to lose or absorb energy". Explain.
- 4. State and explain virial theorem.
- 5. Illustrate grand canonical ensemble with an example.
- 6. Obtain the grand partition function for system of independent localized particles, if the single particle canonical partition function is $Q_1(V,T)=kT/\hbar\omega$.
- 7. Explain how the classical systems and quantum systems with distinguishable particles are different from quantum systems with indistinguishable particles.
- 8. Deduce Wein's formula for black body radiation.
- 9. Plot the variation of specific heat capacity with temperature for solids for the different models.
- 10. Discuss the concept of thereshold frequency in photoelectic effect. How is it related to the work function of the metal?

 $(8 \times 1 = 8 \text{ weightage})$

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Show that for an ideal gas composed of monatomic molecules the chamge in entropy between any two temperatures atconstant pressure 5/3 times the corresponding chamge in entropy change at constant volume.
- 12. Suppose there are four non-degenerate energy levels with energies $0,\ 1.9 \times 10^{-20} J,\ 3.6 \times 10^{-20} J$ and $5.2 \times 10^{-20} J$. The system is observed repeatedly and it is found that the probabilities of being in these levels are $p_0=0.498,\ p_1=0.264,\ p_2=0.150$, and $p_3=0.088$. Is the system in thermal equilibrium and if so what is the temperature.
- 13. Show that for an ideal gas, $\frac{S}{Nk} = \ln\left(\frac{Q_1}{N}\right) + T\left(\frac{\partial \ln Q_1}{\partial T}\right)_{P}$, where Q_1 is the single particle cannonical partition function.
- 14. Show that ${
 m Tr}(\hat{H}\hat{
 ho})=\frac{3}{2}kT$ for a free particle of mass m in a cubical box of side L in canonical ensemble.
- 15. Argue that the statistical weight factor for the distribution $\{n_i\}$ for a system of bosons $W_{BE}\{n_i\}=1$.
- 16. Discuss the statistics of occupational number for the three distributions and show that they converge to the same value in the classical limit.
- 17. Given the grand partition function of a charged particle in an external magnetic field In $Q=rac{-V}{6h^3}(2\pi m)^{3/2}(\mu_{eff}B)^2\sqrt{\beta}f_{1/2}(z)$. show that $(\chi_\infty)_{dia}=rac{1}{3}(\chi_\infty)_{para}$ (take $\mu^*=\mu_{eff}$).
- 18. Calculate under what pressure water would boil at 120^0C . One gram of steam occupies a volume of 1677 cm^3 . Latent heat of steam = 540cal/g, $J=4.2\times10^7$ erg/cal. Atmospheric pressure = $1.0\times10^6 dyne/cm^3$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. Derive the thermodynamic properties of classical ideal gas by explicitly computing the number of microstates $\Omega(N,V,E)$. (Treating Ideal gas as particles confined in a cubical box of volume $V=L^3$ with single particle energy $\epsilon_{n_x,n_y,n_z}=\frac{h^2}{8mL^2}(n_x^2+n_y^2+n_z^2)$).
- 20. Discuss the energy and particle number fluctuations in grand canonical ensemble.
- 21. Explain Bose-Einstein Condensation . Deduce the expression for critical temperature.
- 22. Discuss the nature of Fermi gas at finite but low temperatures and arrive at the equation of state . Show that the specific heat capacity is proportional to the temperature.

 $(2 \times 5 = 10 \text{ weightage})$

