

QP CODE: 20000681

Reg No :

Name :

MSc DEGREE (CSS) EXAMINATION , NOVEMBER 2020

Second Semester

M Sc PHYSICS

CORE - PH010201 - MATHEMATICAL METHODS IN PHYSICS-II

2019 Admission Onwards

6039F8AC

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Find the analytic function f(z)=u(x,y)+iv(x,y) in which $\ u(x,y)=x^3-3xy^2$.
- 2. Evaluate $\oint_c \left(x^2-y^2+2ixy\right)\,dz$ where c is the contour |z|=1.
- 3. Expand $\,f(z)=e^z\,$ as a Taylor series about $\,z=0\,$.
- 4. Explain the periodicity in the output of a full wave rectifier.
- 5. Describe the periodicity of harmonic oscillator.
- 6. What is the Laplace transform of $\sinh at$?
- 7. Evaluate $\int_0^\infty e^{-x} x^{\frac{-2}{5}} dx$.
- 8. Evaluate Laguerre polynomials $\,L_0(x)\,$, $\,L_2(x)\,$ and $\,L_3(x)\,$.
- 9. What are circular harmonics?
- 10. Express the Green's function of self adjoint operator.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Find the residue of $f(z)=rac{e^z}{z^2+a^2}$ at its singularities.
- 12. Evaluate $\int\limits_0^\infty {\frac{1}{{1 + {x^2}}}} \, dx$
- 13. Show that if f(x) is an odd function, then its real Fourier series expansion contains no cosine terms.

Page 1/2

- 14. If $g(\omega)$ is the Fourier transform of f(x), show that $g(-\omega) = -g^*(\omega)$ is a necessary and sufficient condition for f(x) to be pure imaginary. $[g^*(\omega)]$ is the complex conjugate of $g(\omega)$
- 15. Obtain the relation between Beta and Gamma functions.
- 16. If $J_n(x)$ is n^{th} order Bessel function, show that $J_{n-1}(x)-J_{n+1}(x)=2J_n^{'}(x)$.
- 17. If $P_n(x)$ is Legendre polynomial of degree $\,n\,$, using recurrence relations show that $(1-x^2)\;P_n''(x)-2x\;P_n^{'}(x)+n(n+1)P_n(x)=0\,$.
- 18. Find the general solution of 1-Dimensional heat equation.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. a) State and prove Cauchy's integral formula for derivatives. b) Evaluate $\oint_c \frac{\sin^2 z z^2}{(z-a)^4} \, dz$, where c is the circle |z-a|=5 by using Cauchy's integral formula.
- 20. Derive laplace transform of $\,n^{th}\,$ order derivative of a function. Also solve for earth's nutation using Laplace transform.
- 21. Obtain the series solution of the Hermite differential equation.
- 22. Solve the differential equation $\frac{\partial^2 u}{\partial r^2} \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ for $u(r,\theta)$ using method of separation of variables

(2×5=10 weightage)

