Reg.	No
------	----

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY/FEBRUARY 2017

First Semester

Faculty of Science

Branch II: Physics-A-Pure Physics

PH 1C 03—ELECTRODYNAMICS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any six questions. Weight 1 for each question.

- 1. Prove that $E = -\nabla V \frac{\partial A}{\partial t}$.
- 2. Write a note on Maxwell stress tensor T_{ij} . What does its diagonal elements and off diagonal elements represent?
- Explain Minkowsky force on a charge 'q'.
- 4. Write a note on skin depth. Write the equation for skin depth for poor conductor and good conductor.
- 5. Explain proper velocity 4 vector.
- Explain Abraham-Lorentz formula for the radiation reaction force.
- Explain characteristic impedance of transmission line.
- 8. Explain the difference between phase and group velocity.
- 9. Explain boundary conditions of electric and magnetic fields.
- Write Lorentz transformation equations.

 $(6 \times 1 = 6)$

Part B

Answer any four questions. Weight 2 for each question.

11. Find the fields, and the charge and current distributions corresponding to:

$$V(r,t) = 0$$
 and $A(r,t) = \frac{-1}{4\pi\epsilon_0} \frac{qt}{r^2} \hat{r}$.

- 12. Prove that $E^2 c^2B^2$ is relativistically invariant.
- 13. An infinite straight wire carries a current $I(t) = \begin{cases} 0 & f \text{ or } t \leq 0 \\ I_0 & f \text{ or } t > 0 \end{cases}$. Find the resulting electric field.
- 14. A rectangular wave guide has dimension 3×2 cm. operates at 10 GHz. Find f_c , λ_c , λ_g and V_p of TE₁₀ mode.
- 15. Electric field intensity of a uniform plane wave in free space is given by $\mathbf{E} = 94 \cos(\omega t + 6z)\hat{x}$. Find the magnetic field.
- 16. A plane electromagnetic wave has magnetic field given by:

B
$$(x, y, z, t) = \sin \left((x + y) \frac{k}{\sqrt{2}} + \omega t \right) \hat{k}$$
. Find the pointing vector?

 $(4 \times 2 = 8)$

Part C

Answer all questions. Weight 4 for each question.

17. (a) Derive 'work energy theorem' of electrodynamics.

Or

- (b) Explain reflection and transmission at oblique incidence. Obtain the expression for reflectance and transmittance.
- 18. (a) Explain electromagnetic field tensor.

Or

- (b) (i) Explain proper time and proper velocity.
 - (ii) Write a note on relativistic potential formulation.
- 19. (a) ExplainTM wave propagation in rectangular wave guide.

Or

- (b) Explain radiation form quarter wave monopole.
- 20. (a) (i) Discuss Jefimenko's equations.
 - (ii) Calculate the retarded potentials of a point charge.

Or

(b) Explain magnetic dipole radiation.