Reg.	No
8.	

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY/FEBRUARY 2017

First Semester

Faculty of Science

Branch II-Physics-A-Pure Physics

PH 1C 01-MATHEMATICAL METHODS IN PHYSICS-I

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any six questions.

Weight 1 each.

- 1. Define Levi-Civita Tensor.
- 2. What is the physical interpretation of curl of a vector?
- 3. If x^i and x^{-i} are independent co-ordinate of a point, show that $\frac{\partial x^j}{\partial x^{-k}} \frac{\partial x^{-k}}{\partial x^i} = \delta_i^j$.
- 4. Define Hilbert space.
- 5. Verify Green's theorem for $\int_{C} \left[\left(xy + y^2 \right) dx + x^2 dy \right]$ where C is bounded by y = x and $y = x^2$.
- 6. Define mixed tensor. Show that kronecker delta is a mixed tensor of order two.
- 7. Write different forms of β function.
- 8. Write a note on Schwartz inequality.
- 9. Define random variable in probability distribution.
- 10. Define normal matrices.

 $(6 \times 1 = 6)$

Part B

Answer any four questions. Weight 2 each.

11. Find the matrix P which transforms the matrix $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ to the diagonal form.

- 12. If $f = (x^2 + y^2 + z^2)^{-n}$, find div grad f and determine the value of n if div grad f = 0.
- 13. Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- 14. Prove that $H'_n(x) = 2nH_{n-1}(x)$.
- 15. Show that Legendre polynomial can be expressed as $P_n(X) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$.
- 16. Obtain the expression for metric tensor in cylindrical co-ordinate system.

 $(4 \times 2 = 8)$

Part C

Answer all questions. Weight 4 each.

17. (A) Explain:

- (i) Addition of tensors.
- (ii) Outer product of tensors.
- (iii) Contraction of tensors.
- (iv) Inner product of tensors.

Or

- (B) (i) Define Christoffel's symbols. Explain Riemann-Christoffel symbol.
 - (ii) Define geosedic. Obtain differential equation of geosedic in a space.
- 18. (A) (i) Prove that $\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = 2^n n! \sqrt{\pi}$.
 - (ii) Obtain generating function of Legendre polynomial.

Or

- (B) (i) Prove that beta function is symmetric.
 - (ii) Obtain the relation between beta and gamma function.

19. (A) Derive the solution of Bessel differential equation.

Or

- (B) (i) What are unitary and orthogonal transformation?
 - (ii) Explain normal modes of vibration.
- 20. (A) (i) Explain Poisson and Gaussian distribution.
 - (ii) Derive the theorem corresponding to relation between line and surface integral.

Or

(B) Explain cylindrical co-ordinate system. Prove that this co-ordinate system is orthogonal. Express zi - 2xj + yk in cylindrical polar co-ordinate system.

 $(4 \times 4 = 16)$