		и	š				×				ü								

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2017

Third Semester

Faculty of Science

Branch I (A): Mathematics

MT 03 C12—FUNCTIONAL ANALYSIS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Define a Schauder basis for a normed space X. Give an example.
- 2. Give examples of subspaces of \(l^2 \) and \(l^2 \) which are not closed.
- 3. Define the dual space of a normed space. What is the dual space of \mathbb{R}^n .
- 4. Define an inner product space. Show that if $x \perp y$ in an inner product space X, then $||x+y||^2 = ||x||^2 + ||y||^2$.
- 5. Give an example of $x \in l^2$ such that we have strict inequality occurs in Bessel inequality.
- 6. Show that for any bounded liner operator T on a Hilbert space H, the operator $T_1 = \frac{1}{2} \left(T + T^*\right)$ and $T_2 = \frac{1}{2} \left(T T^*\right)$ are self adjoint, where T^* denotes the Hilbert adjoint operator of T.
- 7. Define a reflexive space. Give example of a space which is:
 - (i) Reflexive.
 - (ii) Non-reflexive.
- 8. Of what category is the set of all rational numbers (a) in R; (b) in itself. Also of what category the set of all integers in R.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Prove that on a finite dimensional Vector space X any two norms are equivalent.
- 10. State and prove Riesz's lemma.
- Let X and Y be metric spaces and T: X → Y be a continuous mapping. Prove that the image of a compact subset M of X under T is compact.
- 12. Show that a finite dimensional vector space is algebraically reflexive.
- 13. Let μ be a subset of and inner product space X. Prove the following :
 - (a) $x \perp \mu \Rightarrow x = 0$.
 - (b) If X is complete, the $x \perp \mu \Rightarrow x = 0$ is sufficient for the totality of μ in X.
- Prove that in every Hilbert space H ≠ {0} there exists a total orthonormal set.
- 15. Let S, T \in B(X, Y), show that $(S + T)^x = S^x + T^x$ and $(\alpha T)^x + \alpha T^x$.
- 16. Prove that if the dual space X' of a normed space X is separable, then X itself is separable.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. (i) Let T be a liner operator. Prove the following:
 - (a) The range $\mathcal{R}(\mathcal{I})$ is a vector space.
 - (b) If dim $\mathcal{D}(\mathcal{I}) = n < \infty$, then dim $\mathcal{R}(\mathcal{I}) \le n$.
 - (c) The null space $\mathcal{N}(\mathcal{I})$ is a vector space.
 - (ii) Let T be a bounded linear operator. Prove the following:
 - (d) $x_n \to x$ implies $Tx_n \to T_x$ where $x_n, x \in \mathcal{D}(\mathcal{I})$.
 - (e) the null space M(I) is closed.
- 18. Prove that the dual of l^p is l^q , where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$.
- 19. (i) State and prove Schwarz inequality and triangle inequality.
 - (ii) show that in an inner product space, if $x_n \to x$ and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

- 20. (i) State and prove Bessel inequality.
 - (ii) Describe Gram-Schmidt process for orthonormalizing a linearly independent sequence in an inner product space.
- 21. Let H be a Hilbert space, prove that:
 - (a) If H is separable, then every orthonormal set in H is countable.
 - (b) If H contains an orthonormal sequence which is total in H, then H is separable.
- 22. State and prove Hahu-Banach extension theorem for linear functionals.

 $(3 \times 5 = 15)$