100	100	CHART	١
T	Ð	067	

			14.624
Par	FO:	2	2

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2016

Third Semester

Faculty of Science

Branch: I (A)-Mathematics

MT03C14-NUMBER THEORY AND CRYPTOGRAPHY

(2012-Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Divide $(11001001)_2$ by $(100111)_2$ and divide $(HAPPY)_{26}$ by $(SAD)_{26}$.
- 2. Find the gcd (1547, 560).
- 3. How many divisors does 945 have ? List them all.
- 4. Evaluate the Legendre symbol $\left(\frac{97}{101}\right)$
- 5. Define Hash function.
- 6. What is the probabilistic encryption?
- 7. Find all bases b for which 15 is a pseudoprime.
- 8. Use Fermat factorisation to factor 4601.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- Estimate in terms of a simple function of n and N the number of bit operations required to compute Nⁿ.
- Convert 10⁶ to the bases 2, 7 and 26.
- Prove that n⁵-n is always divisible by 30.
- 12. Determine whether 7411 is a residue module to prime 9283.
- 13. Explain discrete algorithm problem.
- 14. Using the Silver-Pohlig-Hellman algorithm, find the discrete log of 153 to the base 2 in F_{181}^{ϵ}

Turn over

- 15. Show that p^2 (with p prime) is a pseudoprime to the base b if and only if $b^{p-1} \equiv 1 \mod p^2$.
- 16. Let n = 4633. Use 68, 152 and 153 with a suitable factor-base B to factor 4633. What are the corresponding vectors?

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Estimate the time required to convert a K-bit integer to its representation in the base 10.
- 18. Prove that $\Sigma_{d/n}\phi(d) = n$.
- Show that for every prime power q there is one and (up to isomorphism) only one finite field with 2 elements.
- 20. Explain in detail the RSA cryptosystem.
- 21. Explain the Diffie-Hellman key exchange system.
- 22. Explain the quadratic sieve method in detail.

 $(3 \times 5 = 15)$