| Reg. | No | |------|----| |------|----| Name..... # M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2016 #### Third Semester Faculty of Science Branch I (A)-Mathematics ## MT 03 C13-DIFFERENTIAL GEOMETRY (2012 Admission onwards) Time: Three Hours Maximum Weight: 30 Us. Pinckides Chargement dir #### Part A Answer any five questions. Each question has weight 1. - 1. Find the gradient field of $X(x_1, x_2) = (x_2, x_1)$. - 2. Define (i) Regular point of a smooth function; (ii) Tangent space. - 3. Define a geodesic. Show that geodesics have constant speed. - 4. Prove that if X and Y are two parallel vector fields along α, X · Y is constant along α. - 5. Compute $\nabla_v f$ where $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = 2x_1^2 + 3x_2^2$, where v = (1, 0, 2, 1). - 6. Define a differential 1-form. How will you define the sum of two1-forms. - Define a parametrized n-surface. Write the map which represent the parametrized torus in R⁴. - 8. State inverse function theorem. $(5 \times 1 = 5)$ #### Part B Answer any five questions. Each question has weight 2. - 9. Sketch the level curves and graph of $f(x_1, x_2) = x_1^2 x_2^2$. - Let S ⊂ Rⁿ⁺¹ be a connected n-surface in Rⁿ⁺¹. Prove that there exist on S exactly two smooth unit normal vector fields N₁ and N₂ and N₂(p) = -N₁(p) for all p∈S. Turn over - 11. Describe the spherical image when n = 1 and n = 2 of the surface $-x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 0$, $x_1 > 0$, oriented by $\nabla f / \|\nabla f\|$. - 12. Let S be an n-surface in Rⁿ⁺¹, let α: I → S be a parametrized curve and let X and Y be vector fields tangent to S along α. Show that (i) (X + Y)' = X' + Y'; (ii) (f X)' = f' X + f X' for all smooth functions f along α. - Find the global parametrization of the plane curve oriented by ∇f/||∇f|| where f is the function defined by ax₁ + bx₂ = c, (a, b) ≠ (0, 0). - 14. Let V be a finite dimensional vector space with dof product and let L: V → V be a self-adjoint linear transformation on V. Show that there exists an orthonormal basis for V consisting of eigen vectors of L. - 15. Find the Gaussian curvature of the parametrized 2-surface. $$\phi(t,0) = (\cos 0, \sin \theta, t).$$ Let C be a connected oriented plane curve and let β: I → C be a unit speed global parametrization of C. Prove that β is either one-one or periodic. Also show that β is periodic if and only C is compact. $$(5 \times 2 = 10)$$ ## Part C ### Answer any three questions. Each question has weight 5. - 17. Let U be an open set in Rⁿ⁺¹ and let f: U → R be smooth. Let p∈ U be a regular point of f and let f(p) = c. Prove that the set of all vectors tangent to f⁻¹(c) at p is equal to [∇ f(p)]^L. - 18. Let S be a compact connected oriented n-surface in Rⁿ⁺¹ exhibited as a level set f⁻¹(c) of a smooth function f: Rⁿ⁺¹ → R with ∇ f (p) ≠ 0 for all p∈S. Prove that the Gauss map maps S onto the unit sphere Sⁿ. - Let C be an oriented plane curve. Prove that there exists a global parametrization of C if and only if C is connected. - 20. (a) Prove that the Weingarten map \boldsymbol{L}_{p} is self adjoint. - (b) Prove that $\nabla_v (f X) = (\nabla_v f) \times (p) + P(p) (\nabla_v X)$. - (a) Prove that on each compact oriented n-surface S in Rⁿ⁺¹, there exists a point P such that the second fundamental form of P is definite. - (b) Find the Gauss-Kronecker and mean curvatures of $f\left(x_1, x_2...x_{n+1}\right) = c$ oriented by $\nabla f/\|\nabla f\|$, where $x_1 + x_2 + ... + x_{n+1} = 1$, p = (1, 0, ...0). - 22. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $f: \mathbb{S} \to \mathbb{R}^k$. Prove that f is smooth if and only if $f \circ \phi: \mathbb{U} \to \mathbb{R}^k$ is smooth for each local parametrization $\phi: \mathbb{U} \to \mathbb{S}$. $(3 \times 5 = 15)$