F	0	4	0	4
T.	U	4	U	1

(Pages: 3)

Reg. No.....

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

Branch I-(A)-Mathematics

MT 03 C11-MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- Write the Fourier series generated by f ∈ L ([o, p]) with period p. Also write the formulas for the Fourier co-efficients.
- 2. Write the inversion formula for Fourier transforms.
- 3. If $f(x) = ||x||^2$, then what is the directional derivative f'(c, u) of f, at c in the direction of u.
- Show by an example that a function can have a finite directional derivative f'(c, u) for every u
 but may fail to be continuous at c.
- 5. State the inverse function theorem.
- 6. If f = u + iv is a complex-valued function with a determinant at a point z in C, then show that $J_f(z) = |f'(z)|^2$.
- 7. Define a k-form in an open set $E \subset \mathbb{R}^n$.
- 8. State Stoke's theorem.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. State and prove Weierstrass approximation theorem.
- 10. Show that B $(p,q) = \frac{|p||q}{\lceil (p+q) \rceil}$.

Turn over

- Let f: R² → R³ defined by the equation f (x, y) = (sin x cos y, sin x sin y, cos x cos y). Determine
 the Jacobian matrix Df (x, y).
- Prove that if f is differentiable at c, then f is continuous at c.
- 13. State and prove mean value theorem for differential calculus.
- 14. Let A be an open subset of Rⁿ and assume that f: A → Rⁿ has continuous partial derivatives Df_i on A. If J_f (x) ≠ 0 for all x in A, prove that f is an open mapping.
- 15. For every $f \in \zeta(T^K)$, prove that L(f) = L'(f).
- 16. Suppose $w = \sum_{I} b_{I}(x) dx_{I}$ is the standard representation of a k-form w in an open set $E \subset \mathbb{R}^{n}$.

Prove that if w = 0 in E, then $b_1^{(x)} = 0$ for every increasing k-index I and for every $x \in E$.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. State and prove the convolution theorem for Fourier transforms.
- 18. Assume that g is differentiable at a, with total derivative g'(a). Let b = g(a) and assume that f is differentiable at b with total derivative f'(b). Prove that the composition $h = f \circ g$ is differentiable at a and $h'(a) = f'(b) \circ g'(a)$.
- 19. Let u and v be two real valued functions defined on a subset S of the complex plane. Assume that u and v are differentiable at an interior point c of S and the partial derivatives satisfy the Cauchy-Riemann equations at c. Prove that the function f = u + iv has derivative at c and f'(c) = D₁ u(c) + i D₁ v(c).
- 20. Prove that if both partial derivatives $D_r f$ and $D_k f$ exists in an n-ball (c, δ) and if both are differential at c, then $D_{r,k} f(c) = D_{k,r} f(c)$.
- 21. Assume that the second order partial derivatives $D_{i,j}$ f exist in an n-ball B (a) and are continuous at a, where a is a stationary point of f. Let $Q(t) = \frac{1}{2} f'(a,t) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} D_i$, f(a) t_i t_j .

Prove that:

- (a) If Q(t) > 0 for all $t \neq 0$, f has a relative minima at a.
- (b) If Q(t) < 0 for all $t \neq 0$, f has a relative maxima at a.
- (c) If Q (t) takes both positive and negative values, the f has a saddle point at a.

22. Prove the following :-

- (a) If w and λ are and k-and m-forms respectively of class \mathcal{C}^i in E, then $d\left(w\wedge\lambda\right)=(d\ w)\wedge\lambda+(-1)^k\ w\wedge d\lambda.$
- (b) If w is of class \mathcal{C}^n in E, then $d^2 w = 0$. Here E is some open set in \mathbb{R}^n .

 $(3 \times 5 = 15)$