F	Per	Λ	10	941
17	-3	8 3	8.9	4
(Pha		3.5	u	- 4

(Pages: 2)

Reg.	No

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2016

Third Semester

Faculty of Science

Branch I (a)-Mathematics

MT 03C 11-MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

(2012 Admission onwards)

Time : Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- Write the Fourier series generated by a function f with period 2π in terms of complex exponentials.
- Define integral transform of a function f. Write the exponential Fourier transform.
- 3. Show that the total derivative of a linear function is the function itself.
- Define the Jacobian matrix of a function f: Rⁿ → R^m.
- 5. State inverse function theorem.
- If f = n + iv is a complex valued function with s derivative at a point Z ∈ C, show that:

$$J_{f}\left(z\right)=\left|f'(z)\right|^{2}.$$

- 7. Define a flip.
- Define support of a function f on R^k.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Use Fourier integral theorem to evaluate $\int_{0}^{\infty} \frac{x \sin \alpha x}{1+x^{2}}, \alpha \neq 0.$
- State and prove Weirstrass appoximation theorem.
- 11. State and prove the sufficient conditions for differentiability of f = u + iv.

Turn over

- 12. Compute the gradient vector $\nabla f(x,y)$ at those points (x,y) in \mathbb{R}^2 where if exists for the function : $f(x,y) = x^2 y^2 \log(x^2 + y^2) \text{ if } (x,y) \neq (0,0), \ f(0,0) = 0.$
- 13. Let f be the complex valued function defined by $f(z) = 1/\overline{z}, z \neq 0$, show that : $J_{f}(z) = -|z|^{-4}$.
- 14. Let S be an open connected subset of Rⁿ and let f: S → R^m be differentiable at each point of S.
 If f'(c) = 0 for each c in S, show that f is constant on S.
- 15. If w is of class \mathcal{E}'' in E, then show that $d^2w = 0$
- 16. Suppose E is an open set in Rⁿ, and T is a € mapping of E into an open set V ⊂ R^m and w is a k-form in V. Show that d(w_T) = (dw)_T if w is of class € and T is of class €.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. State and prove Fourier-integral theorem.
- 18. State and prove chain rule for total derivatives.
- 19. (a) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(x,y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix Df(x,y).
 - (b) Let f:S ⊂ Rⁿ to R^m, show that if f is differentiable at c, then f is continuous at c.
- Let f: Rⁿ → R^m and if both partial derivative D_rf and D_kf exist in an n-ball B (c, δ) and if both are differentiable at c, then prove that D_{r,k}f(c) = D_{k,r}f(c).
- 21. Let $f = (f_1, f_2, \dots, f_n)$ has continuous partial derivatives $D_j f_i$ on an open set S in \mathbb{R}^n and that the Jacobian $J_f(a) \neq 0$ for some point a in S. Show that there is an n-ball B(a) on which f is one-one.
- 22. For $(x,y) \in \mathbb{R}^2$ define $F(x,y) = (e^x \cos y 1, e^x \sin y)$. Prove that $F = G_2OG_1$, where:

 $\mathbf{G}_{1}\left(x,y\right)=\left(e^{x}\cos y-\mathbf{1}_{r}y\right)\ \mathbf{G}_{2}\left(u,v\right)=\left(u,\left(1+u\right)\tan v\right)\ \mathrm{are\ primitive\ in\ some\ neighborhood\ of\ }(0,\,0).$

 $(3 \times 5 = 15)$