Reg			

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2017

Third Semester

Faculty of Science

Branch I (A) : Mathematics

MT 03 C11-MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight of 1.

- 1. Define exponential transform, Fourier sine transform and Fourier cosine transforms.
- 2. Define convolution of two functions.
- 3. Give an example of a function that can have a finite directional derivative f'(c, u) for every u but may fail to be continuous at c.
- 4. Write the Jacobian matrix of a $f: \dot{\mathbb{R}}^n \to \mathbb{R}^m$ which is differentiable at c.
- State implicit function theorem.
- 6. Give an example of a function f(x, y) where $D_{1,2}$ $f(x, y) \neq D_{2,1}$ f(x, y).
- 7. State Stokes theorem.
- 8. Define a flip. Give an example.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight of 2.

9. Let $R = (-\infty, \infty)$. Assume that $f \in L(R)$, $g \in L(R)$ and that either f or g is bounded on R. Show

that the integral $h(x) = \int_{-\infty}^{\infty} f(t) g(x-t) dt$ exists for every $x \in \mathbb{R}$ and that h is bounded on \mathbb{R} .

Turn over

- 10. State and prove the exponential form of Fourier integral theorem.
- Prove that if f is differentiable at c then f is continuous at c
- 12. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(x, y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix D f(x, y).
- 13. State and prove Mean Value theorem for vector valued functions.
- 14. Let A be an open subset of Rⁿ and assume that f: A → Rⁿ is continuous and has finite partial derivatives D_jf_i on A. Prove that if f is one-to-one on A and if J_f (x) ≠ 0 for each x ∈ A, then f (A) is open.
- 15. If ω is of class ζ^n in E, show that $d^2\omega = 0$.
- For every f∈ζ(I^k), show that L(f) = L'(f).

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight of 5.

- 17. State and prove Fourier integral theorem.
- 18. Assume that g is differentiable at a, with total derivative g'(a). Let b = g(a) and assume that f is differentiable at b, with total derivative f'(b). Prove that the composition h = f o g is differentiable at a and the total derivative h'(a) is given by h'(a) = f'(b) o g'(a).
- 19. (a) Compute the gradient $\nabla f(x, y)$ in \mathbb{R}^2 for $f(x, y) = x^2 y^2 \log(x^2 + y^2)$ if $(x, y) \neq (0, 0)$, f(0, 0) = 1.
 - (b) Let u and v be two real-valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at an interior point c of S and that the partial derivatives satisfy C.R. equations at c. Prove that f = u + iV has a derivative at c and f'(c) = D₁ u(c) + i D₁ v(c).

- 20. State and prove the sufficient condition for the equality of mixed partial derivatives.
- 21. State and prove the second derivative test for extrema
- 22. Suppose k is a compact subset of \mathbb{R}^4 and $\{V_\alpha\}$ is an open cover of k. Show that there exists functions

$$\psi_{1},\psi_{2}$$
, $\psi_{*}\in\zeta\left(R^{4}\right)$ such that :

- (a) $0 \le \psi_i \le 1$ for $1 \le i \le s$.
- (b) Each ψ_i has its support in some V_{α} .
- (c) $\psi_1(x) + \psi_1(x) + \dots + \psi_s(x) = 1$ for every $x \in k$.

 $(3 \times 5 = 15)$