

QP CODE: 21000384

4

Reg No :

M Sc DEGREE (CSS) EXAMINATION, MARCH 2021 Third Semester

Faculty of Science

CORE - ME010304 - FUNCTIONAL ANALYSIS

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
842D9303

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define a Cauchy sequence. Give an example.
- 2. Prove that an infinite dimensional subspace of a normed space need not be closed.
- 3. Prove that $||T_1T_2|| \le ||T_1|| ||T_2||$ and $||T^n|| \le ||T||^n$
- 4. Let $f:C[a,b]\to R$ be a linear function defined by $f(x)=x(t_0),t_0\in [a,b]$ Is f a bounded functional on C[a,b]? Justify
- 5. Let X be a finite dimensional vector space. If $x_0 \in X$ has the property that $f(x_0) = 0$ for all $f \in X^*$, then $x_0 = 0$
- 6. Define projection operator. Show that it is idempotent.
- 7. Define an orthonormal set. Show that it is linearly independent.
- 8. Prove that if, $\langle v_1,w
 angle=\langle v_2,w
 angle$ for all w in an innerproduct space X then $v_1=v_2$
- 9. Define totally ordered set. Give an example.
- 10. Let X, Y and Z are normed spaces and $T \in B(X,Y)$ and $S \in B(Y,Z)$ then prove that $(ST)^{\times} = T^{\times}S^{\times}$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Prove that a metric d induced by a norm satisfies translation invariance.
- 12. Prove that a closed and bounded set in a metric space need not be compact.
- 13. Define Null space and Range of a linear operator and prove that they are vector spaces.
- 14. Prove that in a finite dimensional normed space X, every linear operator is bounded.
- 15. Show that the space l^p with $p \neq 2$ is not an inner product space,
- 16. Prove that for any x in an inner product space X can have atmost countably many nonzero Fourier coefficients $\langle x, e_k \rangle$ with respect to an orthonormal family $(e_k), k \in I$ in X.
- 17. Define Hilbert-adjoint operator. Let H_1 and H_2 are Hilbert spaces and $S,T \in B(H_1,H_2)$ then prove that $(S+T)^* = S^* + T^*$ and $(\alpha T)^* = \bar{\alpha} T^*$ where α be any scalar.
- 18. Prove that the product of two bounded linear operators on a Hilbert space is self-adjoint if and only if the operators commute.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (i) Define complete metric space.
 - (ii) Show that $l^p, 1 \le p < \infty$ is complete.
 - (iii) Show that Q , the set of rational numbers with respect to usual metric is incomplete.
- 20. Show that dual space of l^p is l^q $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$
- 21. Prove that an Orthonormal set M in a Hilbert space H is total in H if and only if for all $x \in H$ the parseval relation holds.
- 22. State and prove Hahn-Banach theorem of extension of linear functionals.

(2×5=10 weightage)

