

G 18001486

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2018

Second Semester

Faculty of Science

Branch I (A): Mathematics

MT02C10—REAL ANALYSIS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question carries weight 1.

1. Explain whether the graph given by:

$$f(x) = x \cos(\pi/2x)$$
, for $x \neq 0$ and $f(0) = 0$ is rectifiable.

- 2. Establish the condition for the paths \vec{f} and \vec{g} to be equivalent.
- 3. Use the definition of R–S integral to evaluate $\int_{a}^{b} d\alpha (x)$.
- 4. Define upper and lower Stieltjes sums.
- 5. Define equicontinuous family of functions.
- 6. Construct sequences $\{f_n\}$, $\{g_n\}$ which converge uniformly on some set E, but $\{f_n g_n\}$ does not converge uniformly on E.
- 7. Evaluate $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.
- 8. Prove that every continuous mapping f of \bar{D} into \bar{D} has a fixed point in \bar{D} .

 $(5 \times 1 = 5)$

Turn over

Part B

Answer any **five** questions. Each question carries weight 2.

- 9. Give example to show that a continuous function need not be a function of bounded variation. Give proof.
- 10. Show that a function of bounded variation is bounded.
- 11. Suppose f is a bounded real function on [a, b] and $f^2 \in \mathbb{R}$ on [a, b]. Does it follow that $f \in \mathbb{R}$?

 Does the answer change if we assume that $f^3 \in \mathbb{R}$?
- 12. Suppose α increases monotonically on [a,b], g is continuous and $g(x) = G^1(x)$ for $a \le x \le b$. Prove that:

$$\int_{a}^{b} \alpha(x) g(x) dx = G(b) \alpha(b) - G(a) \alpha(a) - \int_{a}^{b} G d\alpha.$$

- 13. Give examples:
 - (a) Uniformly convergent sequence of functions.
 - (b) Absolutely convergent sequence of functions.

Prove your answers.

- 14. If $\{f_n\}$ is a sequence of continuous functions on E and $f_n \to f$ uniformly on E, Prove that f is continuous on E.
- 15. Evaluate $\lim_{x\to 0} \frac{e-(1+x)^{1/x}}{x}$.
- 16. Find the Fourier coefficients:

$$f(x) = x \text{ if } 0 \le x < 2\pi.$$

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question carries weight 5.

17. Show that a continuous function on [a, b] is of bounded variation if and only if f can be expressed as the difference of two increasing continuous functions.

G 18001486

- 18. Establish necessary and sufficient condition for $f \in \mathbb{R}(\alpha)$ on [a, b].
- 19. State and prove the theorem on the differentiation under integral sign.
- 20. Let $\{f_n\}$ be a sequence of continuous functions which converges uniformly to a function f on a set E. Prove that :

$$\lim_{n\to\infty} f_n\left(x_n\right) = f\left(x\right)$$

for every sequence of points $x_n \in E$ such that $x_n \to x$ and $x \in E$. Prove that converse is not true.

- 21. State and prove Taylor's theorem for a continuous function defined on R. Also use Maclaurin's series to evaluate $\lim_{x\to 0} \frac{x-\sin x}{\tan x-x}$.
- 22. Establish the existence of a nowhere differentiable function.

 $(3 \times 5 = 15)$

