

G 18001483

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2018

Second Semester

Faculty of Science

Branch I (A): Mathematics

MT 02 C07—ADVANCED TOPOLOGY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question carries weight 1.

- 1. Let c_i be a closed subset of a space X_i for $i \in I$ show that $\prod_{i \in I} c_i$ is a closed subset of $\prod_{i \in I} X_i$ w.r.
 - to the product topology.
- 2. List two productive and four non-productive properties.
- 3. Characterise evaluation function.
- 4. Explain: (a) Evaluation Map; and (b) Pseudo-metric space.
- 5. List the properties of the binary relation "a follows b".
- 6. Define filter and ultrafilter with examples.
- 7. Define sequentially compact space. Give example to show that compactness does not imply sequential compactness.
- 8. Justify: Alexandorff compactification is a foremost example of compactification. Also state its advantage.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question carries weight 2.

- 9. If the product is non-empty, then each co-ordinate space is embeddable in it—Prove.
- 10. Let Y be any topological space and let I, J be any sets. Prove that the process $(Y^I)^J$ and $Y^{I \times J}$ are homeomorphic to each other.

Turn over

G 18001483

- 11. Obtain a condition under which the evaluation function is one-one. State the definition used in the proof.
- 12. A topological space is Hausdorff iff limits of all nets in it is unique—Prove.
- 13. Prove that in an indiscrete space, every net converge to every point and that this property characterises indiscrete space.
- 14. Characterise continuity in terms of convergence of nets.
- 15. Show that all three forms of compactness are equivalent in a second countable space.
- 16. Prove: Every locally compact Hausdorff space is a Tychonoff space.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question carries weight 5.

- 17. Establish Tietze characterisation of normality.
- 18. (a) Prove a product of topological spaces is completely regular iff each co-ordinate space is so.
 - (b) Define binormal space. Prove that every binormal space is normal.
- 19. (a) Prove that a topological space in a Tychonoff space iff it is embedable into a cube.
 - (b) Define embedding. State all the required results and prove embedding lemma.
- 20. (a) Characterise those families of sets which can be bases for filters.
 - (b) Prove that the intersection of any family of filters on a set is again a filter on that set.
- 21. (a) Show that an ultrafilter converges to a point iff that point is a cluster point of it.
 - (b) Prove that a topological space is compact iff every ultrafilter in it is convergent.
- 22. Prove that every countably compact metric space is second countable. Show also that every continuous, real-valued function on a countably compact space is bounded and attains its extrema.

 $(3 \times 5 = 15)$

