| 1    | 13 | cv  | per l | 40  |
|------|----|-----|-------|-----|
| 4.00 | 2  | 340 | 27%   | - 8 |
| 100  | 50 | ዲዎ  | Q.F   | æ   |

(Pages: 2)

| Reg. | No |
|------|----|
| Nam  | e  |

# M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2015

### Fourth Semester

Faculty of Science

Branch I (A)-Mathematics

## MT04C16-SPECTRAL THEORY

(Programme-Core-Common for all)

[2012 Admission onwards—Regular/Supplementary]

Time: Three Hours

Maximum Weight: 30

#### Part A

Answer any five questions. Each question has weight 1.

- 1. Define closed operator with an example.
- 2. Show that strong convergence always implies weak convergence of operators.
- 3. If |x-e| < 1, show that x is invertible. Also obtain an expression for  $x^{-1}$ .
- 4. Give an example of a normed space which is not Banach.
- 5. Establish the uniqueness of the adjoint of an operator.
- 6. Give an example of a compact linear operator on normed space.
- 7. Give an example of self adjoint operator and find its spectrum.
- 8. Define projection operator with two examples.

 $(5 \times 1 = 5)$ 

### Part B

Answer any five questions. Each questions has weight 2.

- Let T<sub>n</sub> ∈ B(X, Y) where X is a Banach space. If (T<sub>n</sub>) is strongly operator convergent show that
   (||T<sub>n</sub>||) is bounded.
- Define strong operator convergence and uniform operator convergence. Further establish the relationship between them with illustrations.

Turn over

- 11. Show that closedness does not imply boundedness of a linear operator. Establish the converse also
- 12. Establish the linear independence property of eigen vectors.
- 13. Show that the set of all linear operators on a vector space into itself forms an algebra.
- 14. Show that the set of all complex matrics of the form  $x = \begin{bmatrix} \alpha & \beta \\ 0 & 0 \end{bmatrix}$  forms a sub-algebra of the algebra of all complex  $2 \times 2$  matrics and find  $\sigma(x)$ .
- Show that a compact linear operator on a normed space X can be extended to the completion of X, the extended operator being linear and compact.
- 16. (a) Give an example of a self adjoint positive operator. Justify.
  - (b) Define the residual spectrum of a bounded linear operator T and find it if T is defined on a complex Hilbert space.

 $(5 \times 2 = 10)$ 

#### Part C

Answer any three questions. Each question has weight 5.

- 17. State and prove Banach fixed point theorem? Also explain graph of an operator with examples. Is the completeness condition in the fixed point theorem necessary? Explain.
- 18. Obtain a formula for the spectral radius of an operator on a complex Banach space.
- Let T: X → X be a compact linear operator on a Banach Space X. Prove that every spectral value
  λ≠0 of T is an eigen value of T.
- (a) State and prove the conditions under which the limit of a sequence of compact operators is compact.
  - (b) State and prove the conditions for which the inverse of adjoint equals the adjoint of inverse.
- 21. (a) Let  $T: l^2 \to l^2$  be given by  $T(x_1, x_2, ...) = (0, 0, x_3, x_4, ...)$ . Find the square root of T.
  - (b) Give an example of a bounded self adjoint operator on a Hilbert space and find its spectrum.
- 22. State and prove five properties of projections.

 $(3 \times 5 = 15)$