-	artists and	200	2000
40.00			_
E -	10.0	9.5	1.00
3.75	and to	г.а.	518

(Pages: 3)

Reg.	No
Nam	C

and the same of th

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2016

Fourth Semester

Faculty of Science

Branch I (A)-Mathematics

MT 04 E07—OPERATIONS RESEARCH

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions.

Each question carries weight 1.

- 1. Explain the terms safety stock and lead time in inventory.
- 2. What is Re-order point?
- 3. Define the terms queuing model and queue discipline.
- 4. Explain transient and steady state of queuing systems.
- 5. What is serial multistage model.
- 6. Explain general algorithm for solving a dynamic programming problem (DPP).
- 7. Define total elapsed time and idle time.
- 8. Define sampling distributions.

 $(5 \times 1 = 5)$

Part B

Answer any five questions.

Each question carries weight 2.

- 9. Explain the various inventory models.
- 10. The annual demand for an item is 3200 units. The unit cost is Rs 6 and inventory carrying charges 25 percentage per annum. If the cost at one procurement is Rs. 150 determine:
 - (a) Economic Order Quantity.
 - (b) Number of orders per year.
 - (c) Time between two consecutive orders.
 - (d) The total optimal cost including purchase cost.

Turn over

- 11. Explain the role of exponential distribution in queuing theory.
- 12. Discuss the applications of single server models and multiple server models in queuing theory.
- 13. Explain the three basic characteristics of dynamic programming problem.
- 14. Use dynamic programming to find maximum value of $Z = X_1^2 + 2X_2^2 + 4X_3$ subject to $X_1 + 2X_2 + X_3 \le 8$, $X_1, X_2, X_3 \ge 0$.
- 15. What is meant by no passing rule?
- 16. The past data of demand for an item per week is as given below :

Demand per week: 0 5 10 15 20 25

Frequency : 2 11 8 21 5 3

Using the following sequence of random numbers, generate the demand for the next 10 weeks. Find the average demand per week.

Random numbers: 83, 67, 23, 66, 94, 52, 35, 90, 13, 34.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question carries weight 5.

- Derive expression for economic order quantity and optimum stock level when shortages are permitted. (Regarding costs and other parameters, suitable assumptions may be made).
- 18. Explain the generalized queuing models.
- 19. (a) Obtain the notion of busy period with reference to a queuing system.
 - (b) Derive the expression for expected number in the queue given that the queue is not empty in the case of (M/M/1); (GD//) queue.
- 20. (a) Explain the recursive nature of computations in dynamic programming.
 - (b) Solve using dynamic programming:

Minimize
$$Z = y_1^2 + y_2^2 + y_2^3$$

Subject to the constraint $y_1 + y_2 + y_3 \ge 15$

 $y_1, y_2, y_3 \ge 0.$

- Explain graphical method to solve 2 jobs through k machine sequencing problem with given technological ordering for each job.
- (a) Explain Monte-Carlo simulation procedure. Describe the various steps involved in such procedure.
 - (b) Discuss the method to generate random numbers using the density function :

$$f(x) = \begin{cases} \frac{1}{\beta(2,4)} x^{2-1} (1-x)^{4-1}, 0 < x < 1 \\ 0, \text{ otherwise} \end{cases}$$

 $(3 \times 5 = 15)$