CV	000	-	-
Lx.	zu	ш	a

(Pages: 3)

Reg. No	B	leg.	No			********
---------	---	------	----	--	--	----------

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2016

Fourth Semester

Faculty of Science

Branch I (A)-Mathematics

MT 04 E05-MATHEMATICAL ECONOMICS

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- Explain indifference curve approach. What are the assumptions?
- 2. State the law of diminishing marginal utility. What are its limitations?
- 3. Describe the elasticity of substitution with example.
- 4. Describe Producer's equilibrium.
- 5. Describe Leontief static model
- 6. What are the limitations of the input-output model?
- 7. Discuss the equilibrium and stability of the solution of a Linear difference equation.
- 8. Explain consumption model.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Show that $U = ax^2 + by^2 + c$ always has a single stationary value which is a minimum or maximum or a saddle point according as 'a' and 'b' are positive, negative or of opposite signs.
- Explain the Lagrangian multiplier method to maximize the utility function subject to the budget constraint,
- Prove that producer's equilibrium is obtained when the iso-cost line is tangent to the iso-product curve.
- Explain Cobb Douglas product function, Describe any two applications of Cobb Douglas product function.

Turn over

13. Consider the following Cobb-Douglass production function $Y = 60K^{1/3}L^{2/9}$. Find the missing values in the table

K	L	Y
64	8	-
128	16	
192	24	

- Explain Leontief's dynamic model with a real life example. Explain how matrix algebra is useful
 in studying this model.
- 15. Solve the difference equation $8y_{x+1} + 4y_x 3 = 0$, $y_0 = 1/2$ and determine the behaviour of the solution sequence and calculate the first five values of the solution sequence.
- 16. Discuss the method of solving the first order linear difference equations with constant coefficients.
 Explain the behaviour of it's solution sequence.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. (a) Explain Revealed preference theory of demand with examples.
 - (b) Find the stationary values for the function $U = 2x + y x^2 + xy y^2$.
- 18. (a) Draw iso-quants for the function $f(x, y) = x^2 + y^2$.
 - (b) Find the Marginal rate of technical substitution for a Cobb-Douglas production function.
- 19. (a) Find the marginal rate of technical substitution for the production function $f(x, y) = \sqrt{x} + \sqrt{y}$.
 - (b) State and prove Euler's theorem
- 20. (a) Find the output for the input multiplier (A) and final demand (F) given by :

$$A = \begin{pmatrix} 0.4 & 0.6 & 0.2 \\ 0.3 & 0 & 0.1 \\ 0.3 & 0.1 & 0.2 \end{pmatrix} \text{ and } F = \begin{pmatrix} 80 \\ 60 \\ 40 \end{pmatrix}.$$

(b) Explain input-output analysis.

21. (a) Technology matrix for the input-output model is given by:

	Sector 1	sector 2	Final Demand
Sector 1	140	30	30
sector 2	40	180	80
Primary inputs	20	90	

find the output of each sector.

- (b) Explain the importance and applications of Input-Output analysis in Economics.
- 22. (a) Solve the difference equation $y_x + 3y_{x-1} 2 = 0$.
 - (b) Explain Income-Consumption-Investment model.

 $(3 \times 5 = 15)$