

G 17001241

Reg.	No	
Nam	e	

M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2017

Fourth Semester

Faculty of Science

Branch I(A)—Mathematics

MT 04E 05-MATHEMATICAL ECONOMICS

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Describe the Marginal rate of substitution. How do we calculate it from the utility function
- Define consumer equilibrium with example.
- Explain Isoquants with diagrams.
- 4. Explain Ridge lines.
- Describe Loontief dynamic model.
- 6. What is the meaning of input-output.
- 7. Define a linear difference equation. What are fundamental set of solutions?
- 8. Discuss the behaviour of the solution sequence.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- Explain the Lagrangian multiplier method to maximize the utility function subject to the budget constraint.
- 10. An individual's utility function is $U = 2gx + 2fy ax^2 2hxy by^2$. Show that his demands for the goods are linear in the income.
- What is C.E.S Production function? Find the elasticity of substitution for the C.E.S production function.

Turn over

2 17001241

- 12. Consider Cobb-Douglas production function for two goods $Y_1 = L_1^{3/4} K_1^{3/4}$ and $Y_2 = L_2^{3/4} K_2^{3/4}$ where $\alpha_1 = 1/4$ and $\alpha_2 = 3/4$ are the capital shares of the two industries. Find the equilibrium conditions for the cost minimization.
- Prove that marginal product is always equal to the average product when the average product is maximum.
- 14. Find the output for the input multiplier (A) and final demand (F) given by

$$A = \begin{bmatrix} 0.4 & 0.6 & 0.2 \\ 0.3 & 0 & 0.1 \\ 0.3 & 0.1 & 0.2 \end{bmatrix} \text{ and } \mathbf{F} = \begin{bmatrix} 80 \\ 60 \\ 40 \end{bmatrix}.$$

- 15. Solve the difference equation $4y_{x-1} y_x + 2 = 0$.
- 16. Explain Harold model.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- (a) Prove that if all prices and income change in the same proportion, the quantity demanded is the same.
 - (b) Find the stationary values for the function $U = 4x^2 xy + y^2 x^3$.
- 18. (a) State and prove Euler's theorem.
 - (b) Explain the nature and meaning of the production function.
- 19. (a) Explain the law of variable proportions. Discuss the phases and assumptions.
 - (b) Find the Marginal rate of technical substitution for a Cobb-Douglas production function.
- 20. Technology matrix for the input-output model is given by :

	Scetor 1	Sector 2	Final Demand
Sector 1	0.25	0.40	F1
Sector 2	0.14	0.12	F2
Labour	0.9	0.6	

If final demand $F_1=0.4y+60$ and $F_2=0.5y+100$. Find the equilibrium income and output of the different sectors. Compare the results if $F_1=120$, $F_2=150$.

G 17001241

21. (a) Technology matrix for the input-output model is given by :

	Sector 1	Sector 2	Final Demand
Sector 1	140	30	30
Sector 2	40	180	80
Primary inputs	20	90	

find the output of each sector

- (b) Explain Leontief's models with an example. Explain how matrix algebra is useful in studying this model.
- 22. (a) Explain the method of solution for the first order linear difference equation.
 - (b) Explain the general Cobweb model.

 $(3 \times 5 = 15)$

