Reg	. No
W.T.	

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2015

Fourth Semester

Faculty of Science

Branch I (A)-Mathematics

MT 04 E14-CODING THEORY

(2012 Admission onwards-Regular/Supplementary)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Define complete and incomplete decoding.
- 2. Define weight of a vector u. Show that $d(u, w) \le d(u, v) + d(v, w)$ for any u, v and w in a space V.
- 3. Define a self dual code. Give an example.
- Compute (1000)^{1/2} in GF (16).
- 5. Which elements of GF (16) are primitive.
- 6. If f(x) is a polynomial with coefficients in GF (Pr), show that $f(xP^r) = (f(x))P^r$.
- 7. Find all binary cyclic codes in Rg.
- 8. Which length 7 binary cyclic codes contain the vector (0, 1, 0, 0, 1, 1, 1)?

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Using Hamming decoding, decode the message (0, 1, 1, 1, 0, 0, 1).
- 10. Prove that if d is even,

$$A(n-1, d-1) = A(n, d).$$

- 11. Compute the coset weight distribution of Co.
- 12. Using the double-error-correcting BCH code, decode the following received vector x = (1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1).

Turn over

- 22. (a) Give a generator polynomial of a triple-error-correcting binary BCH code of length 15.
 - (b) What is the dimension of this code?
 - (c) Give a generator matrix for this code.
 - (d) Describe a Reed-Solomon [7, 3] code over GF(8) by giving its generator polynomial. How many errors will it correct.

 $(3 \times 5 = 15)$

- 22. (a) Give a generator polynomial of a triple-error-correcting binary BCH code of length 15.
 - (b) What is the dimension of this code ?
 - (c) Give a generator matrix for this code.
 - (d) Describe a Reed-Solomon [7, 3] code over GF(8) by giving its generator polynomial. How many errors will it correct.

 $(3 \times 5 = 15)$