0	0	0	0	a
Ur.	Z	U	\mathbf{z}	z

(Pages: 3)

Reg.	No
Name	Ð

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2016

Fourth Semester

Faculty of Science

Branch I (A)-Mathematics

MT 04 E14-CODING THEORY

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- Define the distance between two vectors u and v. Describe a sphere of radius r about a vector u with an example.
- 2. Define covering radius. What are the properties of covering radius?
- 3. If a(x) is a binary polynomial, prove that $a(x)^2 = a(x^2)$.
- 4. Find the primitive elements of GF (16).
- 5. Prove that $GF(p^r) \subseteq GF(p^r)$ if and only if $x^{p^r-1}-1$ divides $x^{p^r-1}-1$.
- 6. Let F = GF(q). Find an element in $F[x]/(x^1-1)$ that does not have a multiplicative inverse.
- 7. Find the parity check matrix H for the binary [7, 4] cyclic code C with generator polynomial $f(x) = 1 + x + x^3$.
- 8. Give multiplication table for the field of five elements.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. If d is the minimum weight of a code C then prove that C can correct at the most $\left[\frac{d-1}{2}\right]$ errors, and conversely.
- 10. Show that the general Hamming $\left[\frac{q'-1}{q-1}=n,n-r,3\right]$ codes over GF(q) are perfect single-error-correcting codes.
- 11. Construct a finite field of 16 elements.

Turn over

- 12. Show that the ternary [12, 6] Golay code has minimum weight 6.
- 13. Explain Double error correcting BCH code.
- 14. Use double-error correcting BCH code to find the positions in error of vectors x and y whose syndromes are:

$$syn(x) = \begin{bmatrix} a^{11} & a^{14} \end{bmatrix}^T$$
 and $syn(y) = \begin{bmatrix} a^6 & a^3 \end{bmatrix}^T$

- Prove that the degree of the minimal polynomial m(x) of an element α∈ GF(pⁿ) is the size of a certain cyclotomic coset.
- Prove that every k successive positions are information positions, if the first k are, in an [n, k] cyclic code.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Describe packing radius and covering radius of a code C. Show that :
 - (a) If C has minimum weight d, packing radius $t = \left[\frac{d-1}{2}\right]$.
 - (b) Covering radius r is the weight of the coset of largest weight.
 - (c) Packing radius is the largest among the numbers s so that each vector of weight ≤ s is a unique coset leader.
- 18. (a) Prove that a binary code of length n, minimum distance d or more and dimension $k \ge n m$ exists if:

$$\binom{n-1}{1} + \binom{n-1}{2} + \dots + \binom{n-1}{d-2} < 2^m - 1.$$

- (b) Compute $1001 \times 1011 + 0101 + 1100$ and $(1110)^{\frac{1}{2}} + 1101$ in GF (16).
- (a) Show that a set of elements S in R_n corresponds to a cyclic code C if and only if S is an ideal in R_n.
 - (b) How many polynomials of the form $x^2 + ax + b$ with $b \neq 0$ are there over GF (4).
- (a) Define the binary [24, 12] Golay code. Show that its minimum weight is 8 and corrects triple errors.
 - (b) Suppose xⁿ − 1 = g(x) h(x) over GF (q). Prove that a cyclic code C with generator polynomial g(x) is self orthogonal if and only if the reciprocal polynomial of h(x) divides g(x).

- 21. (a) Let C₁ and C₂ be cyclic codes with generator polynomials g₁(x) and g₂(x) and idempotent generators e₁(x) and e₂(x) respectively. Prove that C₁ \cap C₂ has generator polynomial \(lc.m.(g₁(x), g₂(x)) \) and the idempotent generator e₁(x) e₂(x).
 - (b) Explain the method of finding cyclic codes.
- 22. (a) Let $g(x) = 1 + x^2 + x^5 + x^6 + x^8 + x^9 + x^{10}$ be a generator polynomial of a [15, 5] BCH code. Determine the correct word that was sent if (101101011001001) is received.
 - (b) Find a generator polynomial for a double-error-correcting Reed-Solomon code over GF(16). Give its length and dimension.

 $(3 \times 5 = 15)$