Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2016

Fourth Semester

Faculty of Science

Branch I (A): Mathematics

MT 04 E01-ANALYTIC NUMBER THEORY

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Define Euler's totient, Discuss its properties.
- 2. Show that Dirichlet product of two multiplicative function is also multiplicative.
- 3. Define Liouville's function. Show that it is completely multiplicative.
- 4. Let $f(x) = x^2 + x + 41$. Find the smallest integer $x \ge 0$ for which f(x) is composite.
- 5. State Abel's identity.
- Show that ax = b (mod m) has exactly one solution if (a, m) = 1.
- Let (a, m) = 1. Show that a is a primitive root mod m if and only if the numbers a, a²,..., a^{\$\phi(m)\$} form
 a reduced residue system mod m.
- 8. Prove that $5n^3 + 7n^5 \equiv \pmod{12}$ for all integers n.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. For $n \ge 1$, prove that $\log n = \sum_{d|n} \Lambda(d)$.
- 10. For $x \ge 1$, prove that $\sum_{n \le x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right)$.
- State and prove Legendre's identity.

Turn over

- Describe Chebyshev's functions φ (x) and 9(x).
- 13. State and prove Wilson's theorem.
- 14. State and prove Chinese Remainder theorem.
- 15. Let g be a primitive root mod p, where p is an odd prime. Prove that even powers g^2, g^4, \dots, g^{p-1} are quadratic residues mod p and odd powers g^1, g^3, \dots, g^{p-2} are quadratic non-residues mod p.
- State and prove Wolstenhome's theorem.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Derive Dirichlet's formula for the partial sums of the divisor function d (n).
- 18. For $x \ge 1$, prove that $\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s})$ if s > 0, $s \ne 1$.
- 19. For every integer $n \ge 2$, prove that:

$$\frac{1}{6} \cdot \frac{n}{\log n} < \pi \left(n \right) < 6 \cdot \frac{n}{\log n}.$$

- Prove that the set of lattice points in the plane visible from the origin contains arbitrarily large gaps.
- 21. State and prove Wolstenhome's theorem.
- 22. Let 'p' be an odd prime and let 'd' be any positive divisor of p-1. Show that every reduced residue system mod p has exactly $\phi(d)$ numbers a such that $\exp_{\phi}(a) = d$.

 $(3 \times 5 = 15)$