

17001233

Reg.	No
Name	C

M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2017

Fourth Semester

Faculty of Science

Branch 1 (A)-Mathematics

MT 04E 01-ANALYTIC NUMBER THEORY

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Define Möbius function. Prove that $\sum_{a'|n} \mu(d) = \mu^{2}(n)$.
- 2. Define Dirichlet product of two arithmetical functions. Show that it is commutative and associative.
- 3. Show that $\log [x]! = x \log x x + O(\log (x))$ for $x \ge 2$.
- 4. State prime number theorem.
- 5. Calculate the highest power of 10 that divides 1000!.
- Show that a common factor which is relatively prime to the modulus can be cancelled in a congruence relation.
- 7. State Chinese Remainder theorem.
- Show that there are no primitive roots mod 2^α, if α ≥ 3.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. For $n \ge 1$, prove that $\phi(n) = n \prod_{p \in \mathbb{N}} \left(1 \frac{1}{p}\right)$.
- 10. State and prove Euler's summation formula.
- 11. For 'p' prime, $x \ge 2$ prove that $: \sum_{p \le x \le p} \left[\log p = x \log x \right] = O(x)$.

Turn over

G 17001233

- State and prove Abel's identity.
- 13. State and prove Langrange's theorem.
- State and prove Wolstenhome's theorem.
- 15. Assume (a, m) d and suppose d|b, show that the linear congruence $ax = b \pmod{m}$ has exactly a solutions.
- Write a short note on Euler's pentagonal-number theorem.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Prove that the set of lattice points visible from the origin has density $\frac{6}{\pi^2}$.
- 18. (a) Define generalized convolution. For any arithmetical functions α and β , show that

$$\alpha \circ (\beta \circ F) = (\alpha * \beta) \circ F.$$

- (b) Show that the average order of $\phi(n)$ is $\frac{3n}{\pi^2}$.
- 19. State and prove Shapiro's Tauberian theorem.
- 20. State and prove Chinese Remainder theorem. Find all x which simultaneously satisfy the system of congruences

$$x \equiv 1 \pmod{3}$$
, $x \equiv 2 \pmod{4}$, $x \equiv \pmod{5}$.

- Prove that the set of lattice points in the plane visible from the origin contains arbitrarily large gaps.
- 22. For |x| < 1 prove that $\prod_{m=1}^{\infty} \frac{1}{1-x^m} = \sum_{n=0}^{\infty} p(n) x^n$, where |p(0)-1|.

 $(3 \times 5 = 15)$

