

G 18001031

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, MAY 2018

Fourth Semester

Faculty of Science

Branch—I (A)—Mathematics

MT 04 E 01—ANALYTIC NUMBER THEORY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question carries weight 1.

- 1. Show that $\phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$ for p, prime and $\alpha \ge 1$.
- 2. Define Bell series of an arithmetical function. Also Find $\mu_p(x)$.
- 3. Show that $\sum_{n \le x} \frac{1}{n} = \log x + c + o\left(\frac{1}{x}\right)$ if $x \ge 1$.
- 4. Show that $0 \le \frac{4(x)}{x} \frac{\vartheta(x)}{(x)} \le \frac{(\log x)^2}{\sqrt[2]{x} \log^2}$ for x > 0.
- 5. Show that for $x \ge 2$, $\pi(x) = \frac{\vartheta(x)}{\log x} + \int_{2}^{x} \frac{\vartheta(t)}{t \log^{2} t} dt$.
- 6. Prove that $a \equiv b \pmod{m}$ if and only if a and b give the same remainded when divided by m.
- 7. Show that if a prime *p* does not divide *a*, then $a^{p-1} \equiv 1 \pmod{p}$.
- 8. Given that $m \ge 1$, $(a, m| = |1 \text{ and } f = \exp_m(a)$. Show that $a^k \equiv a^k \pmod m$ if and only if $k \equiv k \pmod f$.

 $(5 \times 1 = 5)$

Turn over

Part B

Answer any **five** questions. Each question carries weight 2.

9. For
$$n \ge 1$$
, prove that $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$.

- 10. State and prove the generalised inversion formula. Also deduce Generalised Mobius inversion formula.
- 11. Prove that the set of lattice points visible from the origin has density $6/\pi^2$.
- 12. Prove that the following relations are logically equivalent:

(a)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1.$$

(b)
$$\lim_{x \to \infty} \frac{\vartheta(x)}{x} = 1.$$

(c)
$$\lim_{r \to \infty} \frac{\psi(x)}{x} = 1.$$

- 13. Prove the following:
 - (a) $\hat{a} = \hat{b}$ if and only if $a \equiv b \pmod{m}$.
 - (b) Two integers x and y are in the same residue class if and only if $x \equiv y \pmod{m}$.
 - (c) The m residue classes $\hat{1}, \hat{2}, \dots, \hat{m}$ are disjoint and their union is the set of all integers.
- 14. Show that for any prime p, all the co-efficients of the polynomial

$$f(x) = (x-1)(x-2)....(x-p+1)-x^{p-1}+1$$
 are divisible by p .

15. State and prove Chinese remainder theorem.

G 18001031

16. Let p be an odd prime and let d be any positive divisor of p-1. Show that in every reduced residue system mod p, there are exactly $\phi(d)$ numbers a such that $\exp(a) = d$.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question carries weight 5.

17. For all $x \ge 1$ show that :

$$\sum_{n \le x} d\left(n\right) = x \log x + \left(2c - 1\right) + O\left(\sqrt{x}\right), \text{ where } c \text{ is the Euler's constant}.$$

18. (a) Prove that for every $x \ge 1$, $[x]! = \prod_{p \le x} p^{\alpha}(p)$ where the product is extended over all primes

$$\leq x$$
 and $\alpha(p) = \sum_{m=1}^{\infty} \left[\frac{x}{p^m} \right].$

(b) If $x \ge 2 \log [x]! = x \log x - x + O(\log x)$.

(c) For
$$x \ge 2$$
 $\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + O(x)$.

where the sum is extended over all primes $\leq x$.

- 19. State and prove Shapiro's Tauberian theorem.
- 20. (a) State and prove Wolstenholme's theorem.
 - (b) Show that the set of lattice points in the plane visible from the origin contains arbitrary large square gaps.

Turn over

G 18001031

- 21. (a) State and prove Lagrange's theorem for polynomial congruence.
 - (b) Let f be a polynomial with integer co-efficients, let $m_1, m_2, ...m_r$ be positive integers relatively prime in pairs, and let $m = m_1, m_2, ...m_r$. Prove that the congruence $f(x) \equiv 0 \pmod{m}$ has a solution if and only if each of the congruences $f(x) \equiv 0 \pmod{m_i}$ (i = 1, 2, ...r) has a solution. Also show that if V(m) and $V(m_i)$ denote the solutions of $f(x) \equiv 0 \pmod{m}$ and $f(x) \equiv 0 \pmod{m_i}$ for i = 1, 2, ...r, then $V(m) = V(m_1) V(m_2) ... V(m_r)$.
- 22. If |x| < 1, prove that $\prod_{m=1}^{\infty} \frac{1}{1-x^m} = \sum_{n=0}^{\infty} p(n)x^n$, where p(0) = 1, p(n) denotes the partition function.

 $(3 \times 5 = 15)$

