~	-	-	-	-
		u	щ	ш
v.		v	v	

(Pages: 3)

Reg.	No

M.Sc. DEGREE (C.S.S.) EXAMINATION, MARCH 2015

First Semester

Faculty of Science

Branch I (A)-Mathematics

MT 01 C01-LINEAR ALGEBRA

(2012 Admissions)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question carries 1 weight.

- 1. If V(F) is a vector space prove:
 - (a) ov = 0 for $v \in V$.
 - (b) $av = bv \Rightarrow a = b$ where $v \in V$, $a, b \in F$.
- 2. Prove or disprove:
 - (a) Union of two subspaces of a vector space is also a subspace.
 - (b) Intersection of two subspaces of a vector space is also a subspace.
- 3. Define the dual space and obtain its dimension.
- 4. If T is a linear transformation on a vector space satisfying $T^3 T + I = 0$, prove T is invertible.
- 5. Give example for commutative ring and non-commutative rings. Prove your assertions.
- Let k be a commutative ring with identity and let A and B be m × n matrics over k. Prove
 det (AB) = (det A) (det B).
- 7. Explain invariant direct sum and invariant subspace with example.
- 8. Let V be two-dimensional over the field F, of all real numbers, with a basis v_1, v_2 . Find the characteristic roots of T given by $T(v_1) = v_1 + v_2$ and $T(v_2) = v_1 v_2$.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question carries 2 weight.

- 9. Find the co-ordinates of the vector (2, 1, -6) of \mathbb{R}^3 relative to the basis (1, 1, 2)(3, -1, 0)(2, 0, -1).
- 10. The linear transformations T_1 , T_2 , T_3 are given by $T_1(x, y, z) = (x + y + z, x + y)$ $T_2(x, y, z) = (2x + z, x + y)$ and $T_3(x, y, z) = (2y, x)$.

Prove that T1, T2, T3 are linearly independent.

- 11. List the properties of the transpose of a linear transformation and prove two of them.
- 12. Define isomorphism. Show $T: V_2(R) \to V_2(R)$ given by T(a, b) = (b, a) is an isomorphism.
- 13. Let K be a commutative ring with identity. Show that the determinant function on 2 × 2 matrics A over K is alternating and 2-linear as function of columns of A.
- 14. Let T be the linear operator on \mathbb{R}^2 , the matrix of which in the standard ordered basis is $\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$. Find all subspace of \mathbb{R}^2 that are invariant under T.
- Obtain equivalent conditions for λ to be a characteristic value of a linear operator T defined on the finite dimensional-vector space.
- Obtain necessary and sufficient condition for a linear operator on a finite dimensional vector space to be singular.

will prove at T every 0 = 1 + T - T and that is some solver and residence beautiful (5 \times 2 = 10)

Part C

Answer any three questions. Each question carries 5 weight,

- 17. (a) If α, β, γ are linearly independent show that $\alpha + \beta, \alpha \beta, \alpha 2\beta + \gamma$ are also linearly independent.
- (b) Let F be a field of real numbers and V be the set of all sequences (a₁, a₂, ... a_n...), α_i ∈ F where equality, additional and scalar multiplication are defined component-wise. Verify that

V is a Vector space over F. Further, show that $W = \left\{ (a_1, a_2, a_n,) \in V / \lim_{n \to \infty} a_n = 0 \right\}$ is a subspace of V.

18. (a) Find the subspace annihilated by the following functional x^4 :

$$f(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4$$

$$g(x_1, x_2, x_3, x_4) = 2x_2 + x_4$$

$$h(x_1, x_2, x_3, x_4) = -2x_1 - 4x_3 + 3x_4$$

- (b) Let T: V → W be linear where V and W are vector space over F. Show that :
 - (i) The range (Tt) is the annihilator of the null space of T.
 - (ii) Rank (Tt) = Rank T.
- 19. (a) If $B = \{(1, -1, 3)(0, 1, -1)(0, 3, -2)\}$ be a basis for $V_3(R)$ find its dual basis B^* .
 - (b) Find the matrix of a linear transformation T on V_3 (R) defined as:

$$T\left(a,b,c\right) = \left(2b+c,a-4b,3c\right) \text{ with respect to the ordered basis } \left\{\left(1,1,1,\right)\left(1,1,0\right)\left(1,0,0\right)\right\}.$$

- State and prove the properties of determinants.
- (a) Differentiate between simultaneous triangulation and simultaneous diagonalisation with examples.
 - (b) Explain annihilatory polynomial and characteristic polynomial.
- 22. State and prove Cayley-Hamilton theorem for linear operators.

 $(3 \times 5 = 15)$