Reg.	No
------	----

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2014

First Semester

Faculty of Science

Branch I (A)-Mathematics

MTO IC 01-LINEAR ALGEBRA

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight L

- 1. Show that the vectors $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ forms a basis for \mathbb{R}^3 .
- Find three vectors in R³ which are linearly dependent and are such that any two of them are linearly independent.
- 3. Let F be a field and let T be a linear operator on F^2 defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$. Find T^{-1} .
- 4. Let $B = \{\alpha_1, \alpha_2, \alpha_3\}$ be the basis for C^3 defined by $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1)$ and $\alpha_3 = (2, 2, 0)$. Find the dual basis of B.
- Let D be a 2-linear function with the property that D(A) = 0 for all 2 × 2 matrices A over K having equal rows. Show that D is alternating.
- Let K be a commutative ring with identity and let n be a positive integer. Show that there exists
 atleast one determinant function on K^{n×n}.
- Let V be an n-dimensional vector space over F. Find the characteristic polynomials of the identity operator and zero operator.
- 8. Find an invertible real matrix P such that P -1AP and -1BP are both diagonals, were

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix}.$$

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

Let W be the set of all (x₁, x₂, x₃, x₄, x₅) in R⁵ which satisfy

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$

$$x_1 + \frac{4}{3}x_3 - x_5 = 0.$$

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0.$$

Find a finite set of vectors which spans W.

- Let T be a linear transformation from V into W. Show that T is non-singular if and only if T carries
 each linearly independent subset of V onto a linearly independent subset of W.
- 11. Let W_1 and W_2 be subspaces of a finite dimensional vector space. Show that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.
- 12. Let $C^{2 \times 2}$ be the complex vector space of 2×2 matrices with complex entries. Let $B = \begin{bmatrix} 1 & -1 \\ -4 & 4 \end{bmatrix}$ and let T be the linear operator on $C^{2 \times 2}$ defined by T (A) = BA. What is the rank of T. Can you describe T^2 .
- Let K be a commutative ring with identify and let A and B n x n matrices. Prove that det (AB) = (det A) (det B).
- 14. Find a 3×3 matrix for which the minimal polynomial is x^2 .
- 15. Let V be a finite dimensional vector space and let $W_1, W_2 ... W_n$ be subspaces of V such that $V = W_1 + ... + W_n$ and dim $V = \dim W_1 + ... + \dim W_n$. Prove that $V = W_1 \oplus + ... \oplus W_n$.
- 16. Let T be a linear operator on an n dimensional vector space V. Show that the characteristic and minimal polynomials for T have the same roots, except for multiplication.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. (a) Let R be a non-zero row reduced echelon matrix. Prove that the non-zero vectors of R form a basis for the row space of R.
 - (b) Prove that the space of all $m \times n$ matrices over the field F has dimension mn, by exhibiting a basis for this space.
- 18. (a) Let V be a finite dimensional vector space over the field F and let W be a subspace of V.
 Show that dim W + dim W⁰ = dim V.
 - (b) Let $\alpha_1 = (1, 0, -1, 2)$ and $\alpha_2 = (2, 3, 1, 1)$ and let W be the subspace of \mathbb{R}^4 spanned by α_1 and α_2 , which linear functionals $f: f(x_1, x_2, x_3, x_4) = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ are in the annihilator of W.
- Let V be an n-dimensional vector space over the field F and let W be an m-dimensional vector space over F. Show that the space L (V, W) is finite dimensional and has dimension mn.
- 20. (a) Let A be an $n \times n$ matrix over K. Prove that A is invertible over K if and only if det A is invertible over K, and $A^{-1} = (\det A)^{-1}$ adj A.
 - (b) We Cramer's rule to solve the following system of linear equations over the field of rational numbers.

$$x + y + z = 11$$
$$2x - 6y - z = 0$$
$$3x + 4y + 2z = 0.$$

- 21. (a) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Show that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
 - (b) If U is the linear operator on C^2 , the matrix of which in the standard ordered basis is $A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}.$ Show that U has 1 dimensional invariant subspaces.

- 22. (a) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x c_1) \dots (x c_k)$, where $c_1, c_2 \dots c_k$ are distinct elements of F.
 - (b) Show that every matrix A such that $A^2 = A$ is similar to a diagonal matrix.

 $(3 \times 5 = 15)$