E/	E	H	•	9
E	u	υ	O	Ü

(Pages: 3)

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2016

First Semester

Faculty of Science

Branch I (a)-Mathematics

MT 01 C 01-LINEAR ALGEBRA

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has 1 weight.

- 1. Write down the criteria for a subset of a vector space to be a subspace. If $V = \{(x, y, z)/x, y, z \in \mathbb{R}\}$ and w is the set of all triplets such that x 3y + 4z = 0, show that w is a subspace of $V(\mathbb{R})$.
- 2. In a vector space show that $\alpha(v-w) = \alpha v \alpha w$ and 1.0 = 0.
- 3. Differentiate between linear transformation and linear fractional with examples.
- Find the linear transformation T: R² → R² given by T (2, 3) = (4, 5) and T (1, 0) = (0, 0).
- 5. Define even and odd permutations with example.
- Explain the determinant of a linear transformation. If the determinant 'A' is invertible then for all B, det(ABA⁻¹) = detB, Prove.
- Define invariant subspace with an example. Also state a necessary condition for a subspace to be invariant.
- 8. If $T^2 = T$ show that T is diagonalizable.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has 2 weights.

9. Suppose that $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ is the matrix of a linear transformation T in the basis (1, 0, 0) (0, 0, 1) find the matrix of T in the basis (1, 1, 1) (0, 1, 1) (0, 0, 1).

Turn over

100	-	-	63	671
84	E%	-	-60	346
400	u	v	u	u

(Pages: 3)

Reg. No	
Name	

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2016

First Semester

Faculty of Science

Branch I (a)-Mathematics

MT 01 C 01-LINEAR ALGEBRA

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has 1 weight.

- 1. Write down the criteria for a subset of a vector space to be a subspace. If $V = \{(x, y, z)/x, y, z \in \mathbb{R}\}$ and w is the set of all triplets such that x 3y + 4z = 0, show that w is a subspace of $V(\mathbb{R})$.
- 2. In a vector space show that $\alpha(v-w) = \alpha v \alpha w$ and 1.0 = 0.
- 3. Differentiate between linear transformation and linear fractional with examples.
- Find the linear transformation T: R² → R² given by T (2, 3) = (4, 5) and T (1, 0) = (0, 0).
- 5. Define even and odd permutations with example.
- Explain the determinant of a linear transformation. If the determinant 'A' is invertible then for all B, det(ABA⁻¹) = detB, Prove.
- Define invariant subspace with an example. Also state a necessary condition for a subspace to be invariant.
- 8. If $T^2 = T$ show that T is diagonalizable.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has 2 weights.

9. Suppose that $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ is the matrix of a linear transformation T in the basis (1, 0, 0) (0, 0, 1) find the matrix of T in the basis (1, 1, 1) (0, 1, 1) (0, 0, 1).

Turn over

- 10. Prove that the set $S = \{\alpha + i\beta, \gamma + i\delta\}$ is a basis for C(R) if and only if $\alpha\delta \beta\gamma = 0$.
- 11. Show that the vectors $\alpha_1 = (1,0,-1)$; $\alpha_2 = (1,2,1)$; $\alpha_3 = (0,-3,2)$ form a basis for \mathbb{R}^3 . Express each of the standard basis vectors e_1 , e_2 , e_3 as a linear combination of α_1 , α_2 , α_3 where $e_1 = (1,0,0)$; $e_2 = (0,1,0)$; $e_3 = (0,0,1)$.
- 12. Define the transpose of a linear transformation and show that it is linear as well as unique,
- 13. If A is invertible then for all B prove that $\det(A B A^{-1}) = \det B$ and $\det(A^{-1}) = (\det A)^{-1}$.
- 14. If a vector space is the direct sum of two of its subspaces. Obtain the basis for the vector space in terms of its component subspaces.
- Let T be a linear operator on an n-dimensional vector space V. Prove that the characteristic and minimal polynomial for T have the same roots except for multiplicities.
- 16. Let V be two-dimensional over the field F of real numbers with a basis v₁, v₂. Find the characteristic roots and corresponding characteristic vectors for T defined by :

$$Tv_1 = v_1 + v_2$$
, $Tv_2 = v_1 - v_2$.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has 5 weights.

- 17. Let w be the subspace of C spanned by $\alpha_1 = (1,0,i)$ and $\alpha_2 = (1+i,1,-1)$.
 - (a) Show that {α₄ α₂} is a basis for w.
 - (b) Show that $\beta_1 = (1,1,0)$, $\beta_2 = (1,i,1+i)$ is also a basis for w.
 - (c) Find the co-ordinate of α_1 and α_2 in the ordered pair $\{\beta_1,\beta_2\}$ for w.
- (a) Define algebra and describe the algebra of linear transformation. Also verify the axioms of algebra.
 - (b) Let T: V₃(R) → V₃(R) defined by : T (a, b, c) = (3a, a b, 2 a + b + c). Prove that T is invertible and find T⁻¹. Also prove (T² − 1) (T − 3 1) = 0.

- 19. Establish the isomorphism of a vector space and its double dual.
- 20. If D is any alternating n-linear function on K^{n × n}, prove that for each n × n matrix A, D (A) = (det A) D (I), where I denotes the n × n identity matrix.
- 21. Characterise a diagonalizable linear operator on a finite dimensional vector space.
- 22. Explain elementary Canonical forms and obtain one of them.

 $(3 \times 5 = 15)$