63	12	n	n	0
G	1	υ	y	Z

(Pages: 2)

Reg. No	
Name	

M.Sc. DEGREE (C.S.S.) EXAMINATION, MARCH 2015

First Semester

Faculty of Science

Branch I (A)-Mathematics

MT 01 C02-BASIC TOPOLOGY

(2012 Admissions)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Differentiate between:
 - (a) Finer and coarser topologies.
 - (b) Discrete and indiscrete topologies.
- 2. Define closed set and open set. Also give examples of sets:
 - (a) Both closed and open.
 - (b) Neither closed nor open.
- 3. Show that Composition of continuous functions is also continuous.
- 4. Define homeomorphism with an example. Also prove your result.
- 5. Explain the concepts of separated sets, mutually disjoint sets and connected sets.
- 6. Prove : Components of open subsets of a locally connected space are open.
- 7. Prove that compact subsets in Hausdorff space are closed.
- 8. Verify that a discrete space satisfies all separation axioms.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Show that if a space is second countable then every open cover of it has a countable sub-cover.
- 10. Illustrate pictorially : Metric topology on R2 is same as the product topology.
- 11. Explain extension problem and its dual.

- 12. Prove that every second countable space is first countable but not conversely.
- 13. Show that the finite Cartesian product of connected space is also connected.
- 14. Differentiate between connectedness and locally connectedness with examples.
- Show that a subspace of a completely regular space is completely regular. Also show that a product
 of completely regular spaces is completely regular.
- Prove that all metric spaces are T₄.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. (a) Establish the existence of infima in the partially ordered set of all topologies on a set X.
 - (b) Characterize subbases.
- (a) Establish equivalent conditions for f to be continuous at x₀.
 - (b) State and prove Lebesgue Covering lemma.
- 19. (a) Use Lebesgue Covering lemma to prove that every continuous function from a compact metric space into another metric space is uniformly continuous.
 - (b) Define weakly hereditary property with two examples and prove your result.
- 20. (a) Establish four equivalent conditions for a space to be connected.
 - (b) Show that the unit sphere in Rh+1 is connected.
- 21. (a) Show that the axioms T_0, T_1, T_2, T_3 and T_4 form a hierarchy of progressively stronger conditions.
 - (b) Prove that in a Hausdorff space limits of sequences are unique.
- 22. Prove that every regular Lindeloff space is normal.

 $(5 \times 3 = 15)$