10.75	200	post	-		
F	-7	1	ж	4	
			•	-	

(Pages: 3)

Reg.	. No
The last of	
Nan	e

M.Sc. DEGREE (C.S.S) EXAMINATION, FEBRUARY 2014

First Semester

Faculty of Science

Branch I (A)-Mathematics

MTO IC 02-BASIC TOPOLOGY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- 1. Let X be a set and $\{\Im_{i}, i \in I\}$ be an indexed collection of topologies on X. Show that $\Im = \bigcap_{i \in \Im} \Im_i$ is a topology on X.
- 2. Show that a subset A of a topological space X is deuse in X if and only if for every non-empty open subset B of X, $A \cap B \neq \emptyset$.
- 3. Show that f is continuous if and only if for all $A \subset X$, $f(\overline{A}) \subset f(\overline{A})$.
- 4. Show that every second countable space if first countable.
- 5. Prove that continuous image of a connected space is connected.
- Show by an example that connectedness need not imply local connectedness.
- Show that regularity is a hereditary property.
- 8. Show that a continuous bijection from a compact space onto a Hausdorff space is a homeomorphism.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- For a subset A of a topological space X, show that A = A ∪ A'.
- 10. Prove that a discrete space is second countable if and only if the underlying set is countable.

Turn over

- Let f: X → Y be a function, where X and Y are topological spaces. Prove that if f is continuous, then the graph of f is homeomorphic to X.
- 12. Show that every separable space satisfies the countable chain condition.
- 13. Show that closure of a connected space is connected. Is the converse true. Justify your answer.
- Show that every quotient space of a locally connected space is locally connected.
- Define a T₄ space. Show that all metric spaces are T₄.
- Define a completely regular space. Give an example. Show that every completely regular space is regular.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. (a) Let X be a set, 3 a topology on X and S a family of subsets of X. Show that S is a sub-base for 3 if and only if S generates 3.
 - (b) If (X, 3) is second countable and Y ⊂ X, then show that any cover of Y by members of 3 has a countable subcover.
- (a) Prove that every continuous real valued function on a compact space is bounded and attains
 its extrema.
 - (b) Prove that continuous image of a compact space is compact.
- 19. (a) State and prove Lebesgue covering lemma.
 - (b) Let X be an uncountable set with the co-countable topology on X. Prove that X is not separable.
- 20. (a) Prove that every closed and bounded interval is compact.
 - (b) Show that union of a collection of connected sub sets of X having a common point is connected.
- 21. (a) Let X be a completely regular space. Suppose F is a compact subset of X, \subset is a closed subset of X and F \cap C = ϕ . Prove that there exists a continuous function from X into the unit interval which takes the value 0 at all points of F and the value 1 at all points of C.
 - (b) Show that every map from a compact space into a T₂ space is closed.

- 22. (a) For a topological space X prove that the following statements are equivalent :
 - (i) X is regular.
 - (ii) For any $x \in X$ and any open set G containing x, there exists an open set H containing x such that $\overline{H} \subset G$.
 - (iii) The family of all closed neighbourhoods of any point of X forms a local base at that point.
 - (b) Prove that a subset of R is connected if and only if it is an interval.

 $(3 \times 5 = 15)$