10	K	K	Q	A
-	U	u	U	*

r	т	-	rie.	~	-		93.
١.	-	础	ĸ	ь	bi.	÷.	2)

Reg.	No
%T	

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2016

First Semester

Faculty of Science

Branch: I (A) Mathematics

MT 01 C02-BASIC TOPOLOGY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five.

Each question has weight 1.

- 1. Give examples: A set that is closed in the subspace may or may not be closed in the larger space.
- 2. Give two topologies on a topological space which are not comparable. Justify your answer.
- 3. Define second countable space. Show that every second countable space is separable.
- 4. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.
- 5. Prove or disprove: The interior and boundary of a connected set are connected.
- 6. Prove that the union of connected subspaces is also connected if they have a common point.
- 7. Compare Hausdorff property and separation axioms.
- Prove that a topological space X is T₂ if and only if every singleton set {x} is closed in X.

 $(5 \times 1 = 5)$

Part B

Answer any five.

Each question has weight 2.

- Show that finite intersection of open sets is open and arbitrary intersection of open sets need not be open.
- 10. Explain: Axiomatic characterisation of closure operators. Also give an example of dense set.
- Let f: X → Y be a function from one topological space to another. Establish three equivalent conditions for f to be a homeomorphism.
- 12. Obtain the relationship between a compact subset and a compact space.

Turn over

- Prove that the complement of Q × Q in the plane R² is connected. Also explain a chain connected metric space.
- Define locally connected space and quotient space. Also show that every quotient space of a locally connected space is locally connected.
- 15. Explain the hierarchy of separation axioms.
- Define Hausdorff space with two examples. Also prove that compact subsets in Hausdorff space are closed.

 $(5 \times 2 = 10)$

Part C

Answer any three. Each question has weight 5.

- (a) For a subset A of a space X prove A = A \cup A'.
 - (b) Characterise open sets (i.e., those which are both closed and open) in terms of boundaries.
 - (c) Characterise an open set of a topological space.
- 18. (a) Prove that every closed surjective map is a quotient map.
 - (b) Every continuous real-valued function on a compact space is bounded and attains its extrema.

 Prove
 - (c) Explain: standard compactness argument.
- 19. (a) Prove that every continuous image of a compact space is compact.
 - (b) Show that compactness property is weakly hereditary.
 - (c) If $f: X \to Y$ is continuous, show that its graph is homeomorphic to X.
- 20. (a) Let $f: X \to Y$ be a continuous surjection prove, if X is connected then so is Y.
 - (b) Show that [0, 1] is compact.
- 21. (a) Give example of a space which is regular but not completely regular. Prove your result.
 - (b) Prove that every compact Hausdorff space is normal.
- 22. Prove that every regular Lindeloff space is normal.

 $(5 \times 3 = 15)$