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Part A

Answer any five,
Each guestion has weight 1.

1. Give examples : A set that is closed in the subspace may or may not be closed in the larger space.
2. Give two topologies on a topological space which are not comparable, Justify your answer.

n

Define second countable space. Show that every second countable space is separable,

4. Find a function { : R — R that is continuous at pracisely one point.

&

Prove or disprove : The interior and boundary of a connected set are connected.
6. Prove that the union of connected subspaces is also connected if they have a common peint.

7. Compare Hausdorff property and separation axioms,
8. Prove that a topological space X ie T, if and only if every singleton set (x| is closed in X.
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Part B

Answer any five,
Each question has weight 2,

0

. Bhow that finite intersection of open sets is open and arbitrary intersection of open sets need not
be open.

10. Explain : Axiomatic characterisation of closure operators. Also give an example of dense set.

11. Let f:X — Y be a function from one topological space to another. Establish three equivalent

conditions for [ te be a homeomorphism,

12, Dbtain the relationship between a compact subset and a compact space.
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13, Prove that the complement of @ x @ in the plane R® is connected. Also explain a chain connected
metric space.

14. Define locally connected space and guotient space. Also show that every quotient space of a locally
connented space is locally connectied.

15. Explain the hicrarchy of separation axioms.

18. Define Hausdorff space with two examples. Also prove that compact subsets in Hausdorff space

are closed.
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Part C
Answer any three,
Each question has weight 5.
17. (a) For a subset A of a space X prove A=A U A,

18, {a)

{c)
19, (a)
(b)
(el
20. {a}
(b}
21. (a)
(b)

Characterise open sets (i.e., those which are both closed and open) in terms of boundaries.
Characterise an open set of a topological space.
Prove that every closed surjective map is a quotient map.

Every continuous real-valued function on a compact space 12 bounded and attains its extrema,
Prove.

Explain : standard compactness argument.
Prove that every continuous image of a compact space is compact.
Show that compactness property is weakly hereditary.

If f:X =Y is continuous, show that its graph is homeomorphic to X.
Let f:X - Y heacontinuous surjection prove, if X is connected then so is Y.
Show that [0, 1] is compact.

Give example of a space which is regular but not completely regular. Prove your result.
Prove that every compact Hausdorff space is normal.

22, Prove that every regular Lindeloff space is normal,
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