W.75	per	-	-	100
- 140	7	1		11%
B.	- 6		u	13

(Pages: 3)

Reg.	No
Nam	ie

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2014

First Semester

Faculty of Science

Branch I (A): Mathematics

MTO IC 03-MEASURE THEORY AND INTEGRATION

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question has weight 1.

- Define outer measure. Show that if m*(E) = 0, then E is measurable.
- 2. Show that if E is a measurable set, then each translate E + y is also measurable.
- 3. Show that the function

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ 1, & \text{if } x \text{ is rational} \end{cases}$$

is not Riemann integrable.

- 4. Show that we may have strict inequality in Fatou's lemma.
- Define a measure space.
- Show that union of a countable collection of positive sets is positive.
- 7. Show that if $f_n \to f$ a.u. then $f_n \to f$ in measure.
- 8. If (X, S, μ) and $(Y, \mathfrak{J}, \upsilon)$ are σ -finite measure spaces, then define the product measure $\mu \times \upsilon$ on $S \times \mathfrak{J}$.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. If (A_n) is a countable collection of sets of real numbers, then show that $m^*(\bigcup A_n) \leq \sum m^*(A_n)$.
- 10. Let $E \subset [0, 1)$ be a measurable set. Then show that for each $y \in [0, 1)$, the set E + y is measurable and m(E + y) = m(E). Have x + y denote the sum modulo 1 of x and y.

Turn over

- 11. Let (f_n) be a sequence of measurable functions defined on a set E of finite measure and suppose that there is a real number M such that $|f_n(x)| \le M$ for all n and all x. If $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in E$, then show that $\int_E f = \lim_{n \to \infty} \int_E f_n$.
- 12. Show that if f is integrable over E, then so is |f| and $|f| \le \int_{E} |f|$. Does the integrability of |f| imply that of f.
- 13. State and prove Lebesgue convergence theorem.
- 14. Show that the set function μ^* defined by μ^* (E) = inf $\sum_{i=1}^{\infty} \mu A_i$ where $\langle A_i \rangle$ ranges over all sequences from a σ algebra such that $E \subset \bigcup_{i=1}^{\infty} A_i$ is an outer measure.
- Show that if f_n → f in measure and g_n → g in measure, then f_n + g_n → f + g in measure and α f_n → α f in measure, where α is any real number.
- 16. If A is an algebra, then show that the σ -algebra generated by A is the smallest monotone class containing A.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. (a) Show that outer measure of an interval is its length.
 - (b) Show that the collection m of measurable sets is a σ -algebra.
- 18. Let f be defined and bounded on a measurable set E with mE finite. Show that

 $\inf_{f=4} \int_{E} \psi(x) \ dx = \sup_{f \ \geq \ \varphi} \int_{E} \varphi(x) \ dx \quad \text{for all simple function } \ \varphi \text{ and } \ \psi, \text{ if and only if } f \text{ is measurable.}$

19. Let f be an increasing real valued function on the interval [a,b]. Then show that f is differentiable almost everywhere. Also show that the derivative f is measurable and $\int_a^b f'(x) \, dx \le f(b) - f(a)$.

- 20. (a) Let (X, \mathcal{B}) be a measurable space, $<\mu_n>$ a sequence of measures which converge set wise to a measure μ and $< f_n>$ a sequence of non-negative measurable functions which converge pointwise to the function f. Then show that $\int f d\mu \leq \underline{\lim} \int f_n d\mu_n$.
 - (b) State and prove Hahn Decomposition theorem.
- 21. State and prove Radon-Nikodym theorem.
- 22. (a) If |f_n| is a sequence of measurable functions which is fundamental in measure. Show that there exists a measurable function f such that f_n → f in measure.
 - (b) Let f_n → f in measure where f and each f_n are measurable functions. Show that there exists a subsequence {n_i} such that fn_i → f a.e.

 $(3 \times 5 = 15)$