Reg.	No

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY/FEBRUARY 2017

First Semester

Faculty of Science

Branch I (a)-Mathematics

MT 01 C03-MEASURE THEORY AND INTEGRATION

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any five questions. Each question carries 1 weight.

- Define a measurable set. If M*(EI = 0, show that E is measurable.
- 2. Show that $X_{A \cup B} = X_A + X_B X_A \cdot X_B$.
- 3. Show that if $f(x) = \begin{cases} 0 & x \text{ irrational} \\ 1 & x \text{ rational} \end{cases}$ then $R \int_{a}^{b} f(x) dx = b a$ and $R \int_{a}^{b} f(x) dx = 0$.
- 4. Show that we may have strict inequality in Fatou's lemma.
- 5. Define a measurable space and a measure μ on a measurable space.
- 6. Show that the union of a countable collection of positive sets is positive.
- 7. Show that if $f_n \to f$ a.u., then $f_n \to f$ a.e.
- 8. If $[X, S, \mu]$ and $[Y, y, \nu]$ be σ -finite measure spaces, define the product measure $\mu \times \nu$ on $S \times T$.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question carries 2 weight.

- 9. Show that the interval (a, ∞) is measurable.
- 10. Give an example of a non-measurable set. Justify your answer.
- State and prove bounded convergence theorem.
- 12. State and prove Lebesgue convergence theorem.
- 18. If If $\mathbf{E}i \in \mathbf{B}$, $\mu \mathbf{E}_1 < \infty$ and $\mathbf{E}_i \supset \mathbf{E}_{i+1}$, show that $\mu \left(\bigcap_{i=1}^{\infty} \mathbf{E}_i \right) = \lim_{n \to \infty} \mu \mathbf{E}_n$.

Turn over

- 14. Show by an example that Hahn decomposition need not be unique.
- 15. Let $\{f_n\}$ be a sequence of non-negative measurable functions and let f be a measurable function such that $f_n \to f$ is measure. Show that $\int f d\mu \le \liminf \int f_n d\mu$.
- 16. Prove that the class of elementary sets is an algebra.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question carries 5 weight.

- 17. (a) Show that outer measure of an interval is its length.
 - (b) Prove that every Borel set is measurable.
- 18. (a) State and prove Monotone convergence theorem.
 - (b) Show that monotone convergence theorem need not hold for a decreasing sequence of functions.
 - (c) Let f be a non-negative measurable function. Show that f = 0 implies f = 0 a.e.
- 19. Let f be an increasing real-valued function on the interval [a, b]. Prove that f is differentiable a.e., the derivative f^1 is measurable and $\int_a^b f'(a) dx \le f(b) f(a)$.
- 20. (a) State and prove Hahn decomposition theorem.
 - (b) Show that Hahn decomposition is unique except for null sets.
- 21. Prove that the calss B of μ^* measurable sets is a c-algebra. Also prove that if $\bar{\mu}$ is μ^* restricted to B, then $\bar{\mu}$ is a complete measure on B.
- 22. Let $[X, S, \mu]$ and [Y, S, v] be α -finite measure spaces. For $V \in S \times \mathfrak{F}$ write $\phi(x) = v(V_x)$, $\psi(y) = \mu(V^y)$ for each $\alpha \in X$, $y \in Y$. Prove that ϕ is S-measurable, ψ is \mathfrak{F} measurable and $\int\limits_X \phi d\mu = \int\limits_Y \psi dv.$

 $(3\times 5=15)$