IP.	CE	N1
A.	60	AT.

Fα	100	STA S	9 8	**1
- 62	uss	502		E .:
	98	ag	age	ages:

Reg. No	***
Name	

M.Sc. DEGREE (CSS) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

Branch : III-Chemistry

CH 3C 11—CHEMICAL KINETICS, SURFACE CHEMISTRY AND PHOTOCHEMISTRY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions. Each question carries a weight of 1.

- 1. What are the two basic condition in which the steady state approximation applied to a chemical reaction?
- 2. Explain the term Photosensitization and quenching.
- What is an excimer? Give one example for an excimer.
- The quantum yield of H₂- Cl₂ reaction is very high. Explain.
- Name the protein involved in the cold light emission in glow worms.
- 6. What is the role of co-catalyst in the cationic polymerization of isobutylene?
- 7. How does primary salt effect differ from secondary salt effect?
- Differentiate between VantHoff intermediate and Arrhenius intermediate.
- 9. What happens to the overall reaction rate when iodine is replaced by bromine in the halogenation of acctone in aqueous solution?
- 10. What happens when an oil soluble dye is added to code liver oil?
- Write down the Hammet Bronsted equation and explain the terms involved.
- 12. What do you understand the by the term collision cross section?
- 13. Explain the term Donnan membrane.

 $(10 \times 1 = 10)$

Section B

Answer five questions attempting not more than 3 questions from each bunch. Each question carries a weight of 2.

Bunch 1 (Short Essay Type)

14. Derive an expression for the rate constant based on Lindeman -Christiansen hypothesis for unimolecular reaction? How can you show the experimental result (reciprocal of rate constant) vary from theoretical result?

Turn over

- 15. Derive the Michelis-Menton equation for an enzyme catalyzed reaction.
- 16. Briefly describe the flash photolysis method for studying fast reactions.
- 17. Explain the Principle of Auger electron spectroscopy in the study of surfaces.

Buncu 2 (Problem Type)

- 18. Photo bromination of cinnammic acid to dibromo cinnammic acid was carried out in blue light of wave length 440 nm at 35 °c using light intensity of 1.5 × 10⁻³ J/s. An exposure of 20 minutes produced a decrease of 0.075 mill moles of bromine. The solution absorbed 80 percent of the light passing through it. Calculate the quantum yield of the reaction.
- 13. Calculate the specific reaction rate k at 556 °C for the reaction:

The activation energy for the reaction is 44000cals; collision diameter is 3.5×10^{-8} .

- 20. A monolayer of N₂ molecule (effective area 0.162 nm²) is adsorbed on the surface of 1 g of an Fe /Al₂O₃ catalyst at 77 K, the boiling point of liquid nitrogen occupies 2.86 cm⁻³ at 0°C and 1 atm pressure .What is the surface area of the catalyst?
- 21. A sample of serum globulin is placed in an ultracentrifuge which is operating at 50,000 rotations per minutes (rpm). If the sedimentation coefficient of this protein is 7.1 × 10⁻¹³ s, how far will the solution boundary move in 30 minutes at a distance of 6.5 cm from the axis of rotation?

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries a weight of 5.

- 22. Describe the Semenov-Hinshelwood theory of Branching chain reaction. Explain the lower and upper explosion limits with reference to the kinetic expression.
- 23. Derive BET adsorption isotherm. Show that it approximates to Langmuir adsorption isotherm under limiting conditions.
- 24. (a) What are surfactants? How osmotic pressure does vary with change in critical micelle concentration?
 - (b) What are the applications of colloidal Surfactants?
- 25. Explain the principle and working of solar cell.

 $(2 \times 5 = 10)$