	progr	2	pany	-1
F	7	6 5		
7.6	- 4	v		_

(Pa	ges	÷	2)
14 0	200		44

Reg.	No
	•

M.Sc. DEGREE (CSS) EXAMINATION, JANUARY 2014

Third Semester

Faculty of Science

Branch III-Chemistry

CH 3C 11—CHEMICAL KINETICS, SURFACE CHEMISTRY AND PHOTOCHEMISTRY

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions. Each question carries a weight of 1.

- 1. What do you understand by the isoenergic lines in potential energy contour?
- 2. Explain the term optical pumping.
- 3. Explain the mechanism of cationic polymerization?
- 4. What is an exciplexs? Give one example for an exciplex.
- 5. What is bioluminescence? Give one example.
- 6. Explain secondary salt effect with one example.
- 7. Define quantum yield. How it is determined?
- 8. Distinguish between general and specific H+ ion catalysis.
- 9. What happens when a small amount of oil soluble dye is added to milk?
- 10. Write down Bronsted-Bjerrum equation and explain the terms involved.
- 11. Define Electrophoretic mobility.
- 12. What do you know by the term turn over number in enzyme catalysis?
- 13. What are HLB numbers?

 $(10 \times 1 = 10)$

Section B

Answer five questions attempting not more than three questions from each bunch.

Each question carries a weight of 2.

Bunch 1 (Short Essay Type)

- 14. Explain the Rice Herzfeld mechanism of organic decomposition reactions of acetaldehyde (in the absence of third body) with special reference to Gold finger, Niclacuse and Letort rule.
- 15. What is the effect of dielectric constant of a medium on the rate of ionic in solutions. Derive the equation for the rate constant?
- 16. Derive Stern-Volmer equation.
- 17. Explain the principle of SEM in the study of surfaces.

Turn over

Bunch 2 (Problem Type)

- 18. 150 ml of N₂ (1 atm pressure at 0° C) was required to form a monolayer on the surface of silica gel. Calculate the surface area of the solid. The cross-sectional area of N₂ is 0.162 (nm)².
- An XPS electron was found to have a kinetic energy of 1073.5 eV using X-ray source of 9.89.
 Calculate the binding energy of the electron.
- 20. In a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from 87.5 W source for 28 min; The intensity of transmitted light was 0.257 that of the incident light. As a result of irradiation 0.324 mol of the absorbing substance decomposed. Determine the quantum efficiency.
- 21. The enzyme catalyzed conversion of a substance at 25 °C has Michealis constant of 0.042 molL⁻¹. The rate of reaction is 2.45 mol L⁻¹ s⁻¹ when the substrate concentration is 0.890 mol L⁻¹? What is the maximum velocity of this enzymolysis?

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries a weight of 5.

- Derive the rate constant following the activated complex theory. Show that ACT agrees with simple collision theory.
- 23. (a) Explain the principle of surface enhanced Raman scattering.
 - (b) Briefly explain the principle and application of STM.
- 24. (a) Explain the Eley-Rideal mechanism for the bimolecular reactions on the surface of solids.
 - (b) Explain the lower and upper explosion limits in H₂ O₂ reaction.
- 25. Describe the mechanism of H₂ Br₂ photochemical reaction by deducing the rate expression. How is it different from the thermal reaction?

 $(2 \times 5 = 10)$