M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2017

Third Semester

Faculty of Science

Branch III: Chemistry

CH3 C11—CHEMICAL KINETICS, SURFACE CHEMISTRY AND PHOTOCHEMISTRY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions.

Each question carries a weight of 1.

- 1. What do you mean by branching chain reaction?
- 2. Explain the term steady state approximation.
- 3. Distinguish between excimers and exciplexes.
- 4. Distinguish between prototropic and protolyptic mechanism with example.
- 5. Define steric factor. Explain how is it related to entropy of activation?
- 6. Explain thermoluminescence with example.
- 7. Explain the principle of Auger Electron Spectroscopy.
- 8. What are the general properties of emulsion?
- 9. Spontaneous adsorption is exothermic. Why?
- 10. What are micelles?
- 11. Explain with one example anionic and cationic surfactants.
- 12. What do you mean by delayed fluroscence?
- 13. What is potential energy surface? Explain its significance.

 $(10 \times 1 = 10)$

Section B

Answer any five questions by attempting not more than 3 questions from each bunch.

Each question carries a weight of 2.

Bunch I (Short Essay Type)

- Derive Stern-Volmer equation. Represent graphically.
- Write a short note on Langmuir Unimolecular theory of adsorption.

Turn over

 The decomposition of NO₂Cl takes place according to the following mechanism. Assuming steady state for Cl derive the rate law. What is the apparent rate co-efficient.

17. Explain the principle and working of solar cells.

Bunch II (Problem Type)

- 18. Photobromination of cinnamic acid to dibromocinnamic acid was carried out in blue light of wavelength 440 nm using light intensity of 1.5 × 10⁻³JS⁻¹. An exposure of 20 minutes produced a decrease of 0.075 millimoles of bromine. The solution absorbed 86% of the light passing through it. Calculate the quantum yield of the reaction.
- 19. A second order reaction has a rate constant k = 2.5 x 10⁻⁹ Lmol S⁻¹ at 25°C. Its energy of activation is 48 KJmol⁻¹. Calculate AS# for the reaction, assuming that the reaction takes place in solution.
- 20. For an enzyme-substrate system obeying the simple Michelis-Menten mechanism, rate of product formation when the substrate concentration is very large, has the limiting value 0.02 mol dm⁻³. At a substrate concentration of 250 mg dm⁻³, the rate is half this value. Calculate k₁/k₋₁ assuming that k₁ >> k₋₁.
- 21. 0.106 mg of stearic acid (M = 284 g mol⁻¹) is found to cover 500 cm² of water surface at the point where surface pressure just begins to rise sharply. Estimate the cros-sectional area a, per stearic acid molecule and thickness t, of the surface film of stearic acid on water. Density of stearic acid = 0.85 g cm⁻³.

 $(5 \times 2 = 10)$

Section C

Answer any two questions.

Each question carries a weight of 5.

- 22. (a) Explain the principle of Lasers in the study of photochemical kinetics.
 - (b) Explain briefly mechanism of heterogeneous catalysis with example.
- 23. (a) Explain the E-type and P-type delayed fluroscence.
 - (b) Derive Michelis-Menten equation.
- 24. Write notes on :
 - (a) Flash photolysis.
 - (b) Eley-Ridel mechanism.
 - (c) NMR and ESR methods of studying fast reactions.
- (a) Describe how the limitations of the Lindemann theory of unimolecular reaction are overcome by the Hinshelwood and RRK modification.
 - (b) compare Transition state theory with Collision theory.

 $(2 \times 5 = 10)$