F	C	×	n	0
T.	U	o	U	Local

(Pages: 4)

Reg.	No

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2015

Third Semester

Faculty of Science

AN3C12/AP3C12/CH3C12/PH3C12/PO3C12-SPECTROSCOPIC METHODS IN CHEMISTRY

(Common to all Branches of Chemistry)

[2012 Admission onwards]

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions, Each question carries a weight of 1.

Calculate the λ_{max} and € _{max} for the following molecules using Woodward-Fieser Rules.

(1) Beta-Carotene

(2) All trans lycopene

- What is optical rotatary dispersion? Explain how this phenomena is helpful to distinguish the Enatiomeric pairs.
- 3. Arrange the following in the increasing order of their carbonyl stretching frequencies Ethyl acetate, valerolactone, γ -butyrolactone, β -propiolactone
- 4. Arrange in the decreasing order of olefinic stretching frequencies of the following compounds.

Turn over

- Explain why the increase in the solvent polarity the UV spectrum gives a blue shift to R-band while a red shift to the K-Band.
- Describe the splitting patterns in the PMR spectra of the following molecules Z-1,
 3-Dimethylcyclopropane, 2R, 3S-2, 3-Dibromopentane.
- 7. What is DEPT? What is its use in structural determinations?
- 8. Calculate DBE (Double bond equivalent) of the following molecules

(a) C₁₂H₁₀O₂.

(b) C₁₅H₁₃Br.

- 9. What is Nitrogen Rule? What is its use in Mass spectrometry?
- 10. What is MALDI? What is its use?
- 11. Explain Mc-Lafferty rearrangement?
- 12. Using an example explain the special advantage in GC-MS.
- Explain the use of UV spectra in distinguishing axial and equatorial conformations using a suitable example.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer five questions.

Each question carries a weight of 2.

- 14. What is "Cotton Effect"? Explain how it is useful in distinguishing the Enatiomeric pairs using an example.
- (a) How the ortho, Meta and Para disubstituted benzene derivatives are distinguished in IR spectra
 - (b) The following triene on partial hydrogenation gave three products, which are separated by GLC, How UV spectroscopy is of help in identifying the products.

- Sketch the ¹HNMR and ¹³CNMR spectra of Hept-3-ene. Explain the spectral features.
- What is Nuclear Overhauser effect (NOE)? Explain its use in structural elucidations using a suitable example.
- 18. Explain Karplus Curve. How it is helpful in determining the conformations?
- What are shift reagents? What is their use in NMR spectra? Name two common shift reagents used.
- Write briefly on the theory and applications of MRI.
- 21. Explain the principle of 2DNMR. Explain HOMOCOSY and HETROCOSY.

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries a weight of 5.

- (a) Write down the fragmentation pattern for the following compounds and suggest the probable mass spectra peaks: (1) n-Hexyl benzene; (2) 2-Hexanol.
 - (b) What are Meta stable peaks? How they are identified in mass spectra. Explain the formation of a broad peak at 46.4 in the mass spectrum of Toluene.
- 23. The phyto toxic fungal metabolite Pyrenocine (Molecular formula-C₁₁H₁₄O₄) had IR absorptions at 3410, 1710 and 1640 cm⁻¹ and an intense UV absorption at 284 nm. It possessed ¹HNMR signals at δ_H 1.71 (3H, d, J = 5.5 Hz), 2.31 (3H, S), 2.64 (1H, exchanged on shaking with D₂O), 3.86 (3H, S), 5.15 (1H, d, J = 7H_z), 5.50 (1H, S), 5.6 (1H, d, J = 15.5 H₂, of q, J = 5.5 H₂) and 5.75 (1H, d, J = 15.5 H₂ of d, J = 7H_z). Irradiation of the signal δ_H 1.71 collapsed the multiplet at δ_H 5.60 to a doublet (J = 15.5 H_z) and irradiation of the signal at δ_H 5.15 collapsed the signal at 6115.75 to a doublet (J = 15.5 H_z). The signal at δ_H 5.15 received nuclear Overhauser effect enhancements on irradiation of the signal δ_H 2.31 and 3.86, but the signal at δ_H 5.50 only received an enhancement from irradiation at δ_H 3.86. Suggest a structure for Pyrenocine.
- State and explain "Octant Rule" Apply this rule and draw the octants for the following compounds and predict the sign of their optical activity

Turn over

25. A natural product A (MF C₁₁H₁₄O₅) had IR absorption at 3400 and 1600 cm⁻¹ and UV absorption at 260 nm. It showed ¹HNMR signals at δ_H 1.03 (3H, d, J = 7H_z), 2.60 (2H, broad, S, exchangeable with D₂O), 3.74 (1H, quintet, J = 7H_z), 3.90 (3H, S), 4.20 (1H, d, J = 7H_z), 5.95 (2H, S), and 6.55 (2H, S). Irradiation at δ_H 1.03 collapsed the signal at δ_H 3.74 to a doublet (J = 7H_z). Oxidation of A with Sodium Iodate gave B (MF C₉H₈O₄) which showed IR absorption at 1690 and 1600 cm⁻¹. Compound B had ¹HNMR signals δ_H 3.90 (3H, S), 5.95 (2H, S), 7.30 (2H, S) and 9.85 (1H, S). There was a NOE enhancement of the signal at δ_H 7.30 on irradiation of the signal at 9.85. Suggest a structure for the compounds A and B.

 $(2 \times 5 = 10)$