6	0"	700
U	41	00

(Pages: 2)

Reg.	No

M.Sc. DEGREE (CSS) EXAMINATION, AUGUST 2014

Second Semester

Faculty of Science

Branch : Chemistry

AN 2C 08/AP 2C 08/CH 2C 08/PH 2C 08/POH 2C 08 - MOLECULAR SPECTROSCOPY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions. Each question carries a weight of 1.

- State Born Oppenheimer approximation.
- 2. What is Stark effect?
- 3. What are the disadvantages of dispersive IR?
- 4. What are Stokes and Anti-Stokes lines?
- 5. Give any three applications of lasers.
- 6. What is Larmour precession?
- 7. What do you mean by magic angle spinning?
- 8. What is Kramer's degeneracy?
- 9. Explain the principle of NQR spectroscopy.
- 10. What are the factors determining chemical shift?
- 11. Draw the EPR spectrum of methyl free radical.
- Deduce theoretically the NMR spectra of CH₃CHClCH₃.
- 13. What are chemical shift reagents? Give one example.

 $(10\times 1=10)$

Section B

Answer any five questions by attempting not more than three questions from each bunch.

Each question carries a weight of 2.

BUNCH 1 (SHORT ESSAY TYPE)

- 14. What is force constant? How is it determine?
- 15. Explain the classical theory of Raman spectrum.

Turn over

- 16. Discuss the theory of NMR spectroscopy.
- 17. Discuss FT techniques in spectroscopy and explain its advantages.

BUNCH 2 (PROBLEM TYPE)

- 18. The average value of spacing between the adjacent rotational lines in the spectrum of NaCl is 0.432 cm⁻¹. Show that ion pairs are present in the vapours of NaCl.
- Determine the rotational energy of CO on the quantum levels J = 1 and 2. If the equilibrium nuclear distance of 10 is 1.131 Å.
- Determine the force constant for co-vibrator provided W_p = 2170 cm⁻¹
- 21. The wave numbers of the lines in the P-branch of the rotation-vibration spectra of methane are 3032.30, 3043.15, 3054.00, 3064.85 and 3075.70 cm⁻¹. Determine the moment of inertia and bond distance of methane.

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries a weight of 5.

- 22. (a) Discuss classical and quantum theory of Raman effect,
 - (b) Discuss FT NMR spectroscopy.
- 23. Discuss about different types of lasers.
- 24. Explain factors influencing Coupling and Karplus relationship.
- Outline the principle of Mössbauer spectroscopy. Explain the application of this technique in the study of Fe (II) and Fe (III) cyanides.

 $(2 \times 5 = 10)$