ш	Ш	Ш	Ш	Ш	Ш
ш		Ш	Ш	Ш	П
	170	1.4.		"	ш

LLC.G.	1346	 	
Nam	e	 	

M.Sc. DEGREE (C.S.S.) EXAMINATION, JULY 2017

Second Semester

Faculty of Science

Branch : Chemistry

AN2C05/AP2C05/CH2C05/PH2C05/POH2C05 -- CO-ORDINATION CHEMISTRY

(2012 Admission onwards)

[Common to all branches of Chemistry]

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions. Each question carries weight 1.

- 1. Give Curie's law. What are its limitations?
- 2. What is Jahn Teller theorem? Explain using a suitable example.
- Predict and explain the possible electronic transitions in [Co(NH₃)₆]²⁺.
- 4. Give a molecular orbital energy level diagram for octahedral complex
- 5. State and explain the selection rules for the electronic spectra of complex compounds
- 6. Arrange the following in the decreasing order of Nephlauxetic effect. Mn (II), Ni (II), Co (II), Mo (II), Fe (III), Mn (IV).
- Give one example of a lanthanide complex used as shift reagent in NMR measurements and explain how it is helpful in simplifying complex spectra.
- 8. Predict which pair have higher stability
 - (a) $|Cu(NH_3)_{\downarrow}|^{2+}$ and $|Cu(en)_{\downarrow}|^{2+}$.
 - (b) $|Cu|(acac)_2|^{2+}$ and $|Cu|(en)_2|^{2+}$.
- 9. Explain briefly the type of bonding of NO ligand in complexes.
- The Irwing Willam order of stability of some ions are given below. Explain the reasons for such an order, Mn (II) < Fe (II) < Co (II) < Ni (II) < Cu (II) < Zu (II).
- 11. What are the differences between ligand to metal charge transfer complex (LMCT) find metal to ligand charge transfer complex (MLCT)? How they are distinguished?

Turn over

G 17003238

- 12. Which is having greater magnetic moment CoCl₂² or CoI₄² ? Why?
- 13. Explain the term synergic bonding using a suitable example

 $(10 \times 1 - 10)$

Section-B

Answer any five questions.

Each question carries weight 2.

- Explain briefly the splitting of d orbitals in: (a) Square pyramidal field; (b) Trigonal bipyramidal field.
- 15. What is Trans effect? Give two applications,
- 16. There are two isomers of Pt (NH₃)₂Cl₂ A and B. When A is treated with thiourea Pt (tu)₄²⁺ is formed. When B is treated with thiourea Pt (NH₃)₂ (tu)2²⁺ is formed.
 Identify the isomers and explain the data (Thiourea = tu)
- 17. Explain the use of ORD and CD in determining the configuration of optically active complexes.
- 18. Give the MO energy level diagram for an tetrahedral complex using a suitable example.
- 19. Explain crystal field theory? What are its shortcomings?
- 20. Calculate the difference in ligand field stabilization energy (in units of Δ_0) between octahedral and tetrahedral coordination of high spin configuration from d^1 to d^9 . Assume that $\Delta_r = 4/9 \Delta_{0r}$
- 21. What is meant by stability of a complex ? Explain the factors determining the stability of complexes?

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries weight 5.

- Write briefly on the kinetics and mechanism of nucleophilic substitution reactions in square planar complexes
- 23. Explain the use of the following in interpreting the electronic spectra of complexes:
 - (a) Orgel diagrams.
 - (b) Tanabe-Sugano diagrams.

G 17003238

- 24. Write briefly on the following using octahedral complexes as example
 - (a) Geometrical and optical isomerism.
 - (b) The kinetics and mechanisms of water exchange reactions.
- 25. Write briefly on:
 - (a) Temperature independent paramagnetism (TIP).
 - (b) Trans effect.
 - (c) Asymmetric synthesis catalyzed by co-ordination compounds.

 $(2 \times 5 = 10)$

