10.75	1.0	^		C
H .	4	83	4	7
	- 1	v	-	dod

(Pages: 3)

Reg. No	
Name	

M.Sc. DEGREE EXAMINATION, NOVEMBER 2010

Third Semester

Faculty of Science

Branch III-Chemistry

Paper X-ORGANIC CHEMISTRY-III

(Common with Paper X of Branch IV-A-Analytical Chemistry)

Time: Three Hours

Maximum: 75 Marks

Section A

Answer any ten questions. Each question carries 2 marks.

- A trisubstituted benzene possessing one bromine and two methoxy substituents exhibit three aromatic resonance at δ 6.40, 6.46 and 7.41. What is the substitution pattern?
- 2. The ketone below have λ max at 244 and 256 nm. Which Ketone has which absorption.

- 3. What are the masses of the charged species produced in the following cleavage pathways?
 - (a) Alpha cleavage of 2-pentanone.
 - (b) McLafferty rearrangement of 4-methyl-2-pentanone.
- 4-Methyl-2-pentanone and 3-methylpentanal are isomers. Explain how you could tell them apart by IR spectroscopy.
- What product will be formed when 2-methyl peperidine is heated with Methyl Iodide and silver oxide solution.

Turn over

- 6. What product (s) will be formed when cyanidine chloride is heated with KOH?
- 7. Write down the structure of cholesterol and mark the chiral carbons.
- Show the mechanism of formation of acetoacetyl-s CoA by the action of malonyls CoA and Acetyls
 CoA. Name the enzyme catalyzing the reaction.
- Citral is used or the starting material for the synthesis of vitamin A. Show how citral is converted in β-ionone.
- Show the reaction involved in the ring opening polymerization of propylene oxide under a Lewis acid initiator.
- 11. Indicate which of the functional groups in the heterocyclic bases Guanine and cytosine functions or hydrogen bond donons and hydrogen bond acceptors?
- Represent a free radical polymerisation using an appropriate example.
- 13. What do you mean by t_R in HPLC and comment on its significance?

 $(10 \times 2 = 20 \text{ marks})$

Section B

Answer any five questions. Each question carries 5 marks.

- Citing suitable example explain what is NOE and compare with that of proton decoupling in structural characterization.
- 15. The mass spectrum of a compound with molecular formula C₆H₁₂O is as follows. Peaks at m/z 43(100), 58(55), 85(30) and 100 (M + 40%). It shows a carbonyl absorption in the IR at γ_{max} 1715 cm⁻¹. Give the structure and show the mechanism of formation of the peaks showing the structure of the fragment ions.
- Depict the synthesis of quercetin using 2-hydroxy-4, 6-dimethoxy acetophenone and 3, 4-dimethoxy benzaldehyde.
- 17. Explain the synthesis of testosterone from cholesterol.
- 18. Briefly explain the basic principles of combinatorial synthesis.
- Illustrate one method for the determination of the number average molecular weight of a synthetic polymer.
- 20. Discuss the use of Ziegler-Natta catalysis for the synthesis of stereoregular polymers.
- 21. Describe the use of crow ethers in metal extraction.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any two questions. Each question carries 15 marks.

22. Deduce the structure of the compound that gave the following spectral data:-

Mass m/z 176.131 (M⁺), 131 (base peak), 103, 77. $IR \gamma_{max}$: 1714, 1639 cm⁻¹.

'HNMR: δ 1.31 (t 3H, J = 7.1 Hz); 4.2 (qt 2H, J = 7.1 Hz) 6.43 (d, 1H, J = 15.8 Hz); 7.24 – 7.57 (m, 5H), 7.67 (d, 1H, J = 15.8 Hz).

BCNMR: 14.3, 604, 118.4, 128.1, 128.9, 130.2, 134.5, 144.5, 166.8 ppm.

Assign the values.

- 23. Illustrate the synthesis of camphor.
- 24. Describe the Phosphoramidite method for the synthesis of a tetranucleotide.
- 25. Write notes on :
 - (a) Utracentrifugation.
 - (b) Protein organisation.
 - (c) Manufacture and applications of polyuraethane.

 $(2 \times 15 = 30 \text{ marks})$