Reg.	No
Nam	

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2016

Fourth Semester

Faculty of Science

Branch III: Chemistry-Pure Chemistry

CH 4E 03-ADVANCED PHYSICAL CHEMISTRY

(2012 Admissions-Regular)

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions.

Each question carries a weight of 1.

- 1. What is meant by mesomorphic state?
- 2. What is collision diameter?
- 3. What is meant by solubility product principle?
- 4. Write a note on fluorescence sensing.
- 5. What is the principle of Atomic Absorption Spectroscopy AAS?
- 6. Write the space groups of a monoclinic system.
- 7. What are the transport properties of gases?
- 8. Give Hermann-Mauguin symbols.
- 9. Write a note on abnormal ionic conductance.
- 10. Derive Bragg's equation.
- 11. What do you mean by Debye-Falkenhagen effect?
- 12. What is decomposition potential?
- 13. What is the role of supporting electrolyte?

 $(10 \times 1 = 10)$

Section B

Answer any five questions. Each question carries a weight of 2.

- 14. Briefly explain theories of liquid crystals.
- 15. Derive the equations for average, RMS and most probable velocities.
- 16. Write a note on Novel fluorephores.

Turn over

- 17. Briefly describe Drude and Nernst's electrostriction model.
- 18. Prove that a crystal can have only n = 1, 2, 3, 4, 6 fold axis of rotational symmetry.
- 19. Give the importance of Wierl's equation in diffraction studies.
- 20. What are the advantages of coulometry?
- Explain the inter ionic effects use to derive DHO equation.

 $(5 \times 2 = 10)$

Section C

Answer any two questions.

Each question carries a weight of 5.

- Derive Debye Huckel Onsager equation.
- (i) Discuss the applications of Amperometry in qualitative analysis of anions and cations in solution.
 - (ii) Explain : (a) Residual current ; (b) Migration current ; (c) diffusion current ; (d) limiting current density.
- 24. (i) Derive Maxwell's law of distribution of velocities.
 - (ii) Explain transport properties of a gas with reference to viscocity and thermal conductivity.
- 25. Briefly explain the instrumentation in Fluorescence spectroscopy.

 $(2 \times 5 = 10)$