0	4	n	n	0
G	1	21	н	н.
-	-	-	•	

(Pages: 2)

Reg.	No
Nam	e

M.Sc. DEGREE (C.S.S.) EXAMINATION MARCH 2015

First Semester

Faculty of Science

Branch : Chemistry

ANIC04/APIC04/ CHIC04/PHIC04/POHIC04—CLASSICAL AND STATISTICAL THERMODYNAMICS

(Common to all Branches of Chemistry)

[2012 Admissions]

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions.

Each question carries a weight of 1.

- 1. What is thermodynamics equation of state? Apply it to an ideal gas equation.
- 2. What is free energy? Give temperature dependance of free energy.
- 3. Explain Konovalov's first and second law.
- 4. Sketch and explain the graphical representation of one pair of partially miscible liquids.
- 5. Describe Nernst heat theorem.
- Write note on thermo osmosis.
- 7. Explain coupled reactions with suitable example.
- 8. What is thermodynamic probability? Obtain the expression of thermodynamic probability.
- 9. What is partition function? Give the relation between partition function and internal energy.
- 10. Derive expression for translational partition function.
- 11. Write expressions for Bose-Einstein and fermi dirace distribution laws. How does Maxwell Boltzmann's law follow from these?
- 12. Distinguish between Bosons and fermions.
- 13. How is fugacity of real gas determined? Explain.

 $(10 \times 1 = 10)$

Turn over

Section B

Answer any five questions by attempting not more than three questions from each bunch.

Each question carries a weight of 2.

Bunch 1 (Short Essay Type)

- 14. What do you mean by excess thermodynamic functions? Give the experimental determination of excess volume and excess enthalpy.
- 15. Derive Gibbs-Helmboltz equation. What are its applications?
- 16. Derive Maxwell-Boltzmann distribution law.
- Prove that complete partition function for a system is the product of translational, rotational, vibrational and electronic partition functions.

Bunch 2 (Problem Type)

- Calculate the free energy of mixing ΔG_{mix} enthalpy of mixing, ΔH_{mix} and ΔS_{mix} at 25°C and 1 atm when ;
 - (a) 10 moles of H are mixed with 10 moles of Ne.
 - (b) 10 moles of H are mixed with 20 moles of Ne.
 - (c) 10 moles of Ne are mixed with 20 moles of equimolar mixture of Ne and He.
- For Daniel all calculate ΔG, if E = 1.10 V at 25°C and D = 2; F 96,500 coulombs.
- Calculate the translational partition function of a molecule of oxygen gas at 1 atm and 298 k moving in a vessel of volume 24.4dm³.
- 21. Calculate the translational entropy of gaseous iodine at 298k and 1 atm.

 $(5 \times 2 = 10)$

Section C

Answer any two questions.

Each question carries a weight of 5.

- Discuss the three component system: CH₃ COOH H₂O CHCl₃ from the stand point of the phase rule.
- Discuss the thermodynamic aspects of the following (a) metabolism (b) glycolysis; (c) biological redox reaction.
- 24. (a) Derive an expression for fermi Dirac statistics.
 - (b) Give comparative account of three statistics.
- 25. Explain Einstein's theory of heat capacity of solids. How does it differ from Debye theory.

 $(2 \times 5 = 10)$