	=	1	1	O
F	5	1	1	О

(Pages: 2)

Reg.	No

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY/FEBRUARY 2017

First Semester

Faculty of Science

Branch: Chemistry

ANI C04/API C04/CHI C04/PHI C04/POHI C04—CLASSICAL AND STATISTICAL THERMODYNAMICS

(Common to all branches of Chemistry)

[2012 Admission onwards]

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions. Each question carries 1 weight.

- 1. Write down the expression for thermodynamic equation of state and applied it to an ideal gas.
- 2. Define the concept of fugacity.
- 3. State Henry's law.
- 4. What is the role of ATP in bioenergetics?
- 5. What is meant by thermodynamic excess function?
- 6. Explain, what is glycolysis.
- 7. State the principles of microscopic reversibility.
- 8. What is meant by statistical weight factor?
- 9. What is partition function? How is it factorised into contributing parts?
- 10. Define the term "cannonical ensemble".
- 11. Which of the following are bosons and fermions:
 - (a) ³He; (b) Alpha particle; (c) Deuterium; (d) Hydrogen molecule; (e) Electron; (f) Photon.
- 12. What is characteristic about Fermi-Dirac Statistics?
- 13. Explain Debye temperature.

 $(10\times1=10)$

Turn over

Section B

Answer any **five** questions by attempting not more than **three** questions from each bunch.

Each question carries 2 weight.

Bunch 1 (Short Essay type)

- 14 Discuss applications of Gibbs-Helmholtz equation.
- 15. Explain thermoelectric phenomena.
- 16. Explain Bose-Einstein condensation.
- 17. Derive Sackur-Tetrode equation applicable to monoatomic gases.

Bunch 2 (Problem type)

- 18. (a) Calculate the standard entropy change of the reaction $C(s) + H_2O(1) \rightarrow CO(g) + H_2(g)$. Given that entropies are $CO(g) = 197.90 \ \mathrm{JK^{-1}}, \ H_2 = -328.50 \ \mathrm{JK^{-1}}, \ C(s)' = 5.69 \ \mathrm{JK^{-1}}, \ H_2O(1) = 70.29 \ \mathrm{JK^{-1}}.$
 - (b) Calculate the standard entropy change of the reaction $Ag_2O(s) \rightarrow 2Ag(s) + \frac{1}{2}O_2(g)$. Given that $Ag_2O(s) = 121.25~JK^{-1}$, $Ag(s) = 42.67~JK^{-1}$, $O_2(g) = 205.01~JK^{-1}$.
- 19. The free energy charge ΔG accompanying a given process is -85.77 kJ at 25° C, and -83.68 kJ at 35° C. Calculate the change in enthalpy (ΔH) for the process at 30° C.
- Calculate the ratio of population at 25° C. for energy levels separated by 10 kJ mol.⁻¹ The ground state is non-degenerated and the excited state is triply degenerate.
- 21. Calculate the rotational partition function for hydrogen bromide gas at 300 K. If the moments or inertia of HBr is 3.31×10^{-4} g cm.² (K = 1.381×10^{-16} erg. deg⁻¹ and $h = 6.626 \times 10^{-27}$ erg. sec.) (5 × 2 = 10)

Section C

Answer any **two** questions. Each question carries 5 weight.

- 22. What is meant by thermodynamics of mixing? Derive Gibbs-Duhem-Margules equation:
- 23. Discuss about a three component system taking suitable example and give its graphical representation.
- 24. (a) How did Einstein explain the observed low heat capacities of atomic crystals at low temperature by the application of quantum theory to the problem?
 - (b) What modification are given by Debye to Einstein theory of atomic crystals.
- 25. Apply Fermi Dirac statistics to understand thermionic emission.

 $(2 \times 5 = 10)$