-	-	200	4.00	
Bar	-	-	40	
	- 4	- 40	444.7	
400	-		-	

(Pages: 2)

Reg.	No
Nam	e

M.Sc. DEGREE (C.S.S.) EXAMINATION, FEBRUARY 2014

First Semester

Faculty of Science

Branch : Chemistry

ANI C03/API C03/PHI C03/POHI C03—QUANTUM CHEMISTRY AND GROUP THEORY

(Common to all branches of Chemistry)

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions.

Each question carries a weight of 1.

- 1. What are the conditions for acceptable wave function?
- 2. What is "commutator operator"?
- 3. Explain the utility of the particle in a box model.
- 4. What is meant by space quantization?
- 5. If r is expressed in atomic unit what will be the first radial function and lowest energy level for H-atom?
- 6. Give the postulate of spin by Uhlenbeck.
- 7. Explain the term abelian group. Give an example.
- 8. Show whether the following matrices commute

$$\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

- 9. Differentiate between reducible and irreducible representations.
- 10. What are the conditions for molecule to be optically active?
- 11. What are the polarised and dipolarised lines in Raman spectra?
- 12. List the space groups in the triclinic crystal system.
- 13. What is statement of GOT?

 $(10 \times 1 = 10)$

Turn over

Section B

Answer any five questions. Each question carries a weight of 2.

- 14. Deduce the time independent Schrodinger wave equation.
- 15. Evaluate the commutator $[\hat{L}^2, \hat{L}_x]$ and $[\hat{L}_{xy}, \hat{L}_y]$.
- Write Schrodinger wave equation for H-atom. Transforms into spherical polar co-ordinates and separate the variables.
- 17. Explain what are block diagonalisation?
- List the symmetry elements of benzene molecule and assign symmetry group.
- Set up group multiplication table for a C₃ v point group.
- 20. Sketch the normal modes of vibrations of Co2 and predict their I.R. and Raman activity.
- What is Frank-Condon principle? Explain its importance in understanding electronic spectra of diatomic molecules.

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries a weight of 5.

- Derive C₃ character table using great orthogonality theorem.
- What are the possible electronic transitions in a molecule? Comment on the selection rules in electronic spectroscopy.
- 24. Apply the Schrodinger equation for a particle in a one dimensional box.
- Discuss briefly the postulates of quantum mechanics.

 $(2 \times 5 = 10)$