F	5	K	A	A
E.	u	υ	4	v

(Pages: 2)

Reg. No.	***************************************
Nomo	and the same of the same of

M.Sc. DEGREE (CSS) EXAMINATION, FEBRUARY 2016

First Semester

Faculty of Science

Branch : Chemistry

ANI C03/API CO3/CHI CO3/PHI CO3/POHI CO3—QUANTUM CHEMISTRY AND GROUP THEORY

(2012 Admission onwards)

[Common to all branches of Chemistry]

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any ten questions. Each question carries a weight of 1.

- 1. Explain the orthogonality and normalisation of wave functions.
- Explain the terms "eigen function and eigen value".
- 3. Compare a classical harmonic oscillator with a quantum mechanical oscillator.
- 4. Define degeneracy. What is the maximum degeneracy possible for a particle in a cube?
- 5. Calculate the lowest energy of an electron in a cubic box of side 10^{-8} cm. (M_a = 9.11×10^{-28} g).
- 6. Ignoring constants write down the angular parts of d_{xx} and $d_{x^2-v^2}$ orbitals.
- 7. What are Ubleribeck and Goudsmith postulate of spin?
- Write group multiplication table for a molecule with E, C₂, σ and i.
- What is meant by a cyclic group? Give an example.
- Generate matrices for S₃ and i.
- 11. For a C3v group, what is the direct product of E with itself?
- 12. Write the irreducible representation corresponding to rotation about C_2^2 in the case of C_{2v} molecule.
- 13. Write selection rule for Raman scattering.

 $(10 \times 1 = 10)$

Turn over

Section B

Answer any five questions. Each question carries a weight of 2.

- 14. Evaluate the commutators $[\hat{L}^2, \hat{L}_x]$ and $[\hat{L}_x, \hat{L}_y]$.
- Apply Schrödinger wave equation for a particle in one-dimensional box. Find the eigen values and eigen function.
- 16. Define Degeneracy. What is the maximum degeneracy possible for a particle in a cubical box ?
- 17. Explain Stern-Gerlach experiment.
- 18. How do you define a point group? Explain.
- 19. What is meant by block diagonalisation? Explain its importance.
- 20. Derive the reduction formula for reducing a reducible representation into irreducible ones.
- 21. Comment on vibrational Raman spectra.

 $(5 \times 2 = 10)$

Section C

Answer any two questions. Each question carries a weight of 5.

- Obtain the allowed eigen states and energies of a particle constrained to move within the boundaries
 of a three-dimensional box.
- 23. (a) Briefly explain Fortrat diagram.
 - (b) What are the factors which cause broadening of spectral lines?
- Apply orthogonality theorem for C_{3v} point group and derive the character table.
- Set up Schrödinger wave equation for the hydrogen atom. Transform the co-ordinate and separate
 the variables.

 $(2 \times 5 = 10)$