E	1	5	6	1
-	-0-	7.0	2	-36

(Pages: 2)

Reg. No	D
Name	***************************************

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Choice Based Course-NANOSCIENCE AND NANOTECHNOLOGY

(Common for B.Sc. Physics Model I and Model II)

[2013 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions. 1 mark each.

- Nanomaterials have a relatively larger surface area when compared to the same of material
 produced in large scale.
- 2. Bottom-up technology starts with small components, always individual which are assembled to make the desired structure.
- 3. Buckminster fullerene is a perfect sphere made from sixty atoms.
- Nanohoms are walled nanotubes with an irregular horn-like shape.
- 5. Fermi level lies in the middle of the energy gap for -
- 6. Electrical characteristics of carbon nanotubes can act as ----
- 7. Scanning probe microscopy uses a ———— that is scanned over a surface.
- 8. Tunnelling conductance increases as local density of states -----.
- 9. A dendrimer is a tree like highly branched ----- molecule.
- Carbon based nano diamonds are soluble in ———.

 $(10\times 1=10)$

Part B

Answer any eight questions. 2 marks each.

- 11. What are carbon nanotubes?
- List a few applications of nanotubes.
- 13. What do you mean by deep traps?
- 14. What is photo fragmentation?
- 15. What are chemical sensors?

Turn over

- 16. Explain STM.
- 17. What are photonic crystals?
- 18. Write a note on magnetoresistance.
- 19. Give the features of quantum wells.
- 20. What do you mean by density of states?
- 21. State the principle of quantum dot lasers.
- 22. What is NEMS? Explain.

 $(8 \times 2 = 16)$

Part C

Answer any six questions. 4 marks each.

- 23. Explain the fabrication of carbon nanotubes.
- 24. Discuss on the cryastallographic method of characterisation.
- 25. Bring out the dynamics of nanomagnets.
- 26. Explain the size dependence of properties of crystal structure.
- 27. Explain transmission electron microscopy.
- 28. Give an account on superfluid clusters.
- 29. Explain the preparation of quantum nanostructures.
- Write a note on nanocarbon ferromagnets...
- 31. Briefly explain single electron tunnelling.

 $(6 \times 4 = 24)$

Part D

Answer any two questions. 15 marks each.

- 32. Describe the physical properties of nanostructures.
- 33. Discuss the electron transport in semiconductors.
- 34. Give an account on nanomachines and nanodevices.
- 35. Describe the applications of nanomaterials in medicine and energy.

 $(2 \times 15 = 30)$