Reg. No
Name

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH/APRIL 2012

Sixth Semester

Core Course—RELATIVITY AND SPECTROSCOPY

(Common for Model-I B.Sc. Physics, Model-II B.Sc. Physics, B.Sc. Physics-EEM and B.Sc. Physics Instrumentation.)

Time: Three Hours

Maximum Weight: 25

Part A

Answer all questions. Objective type questions-Weight 1 for each bunch.

	Bunch 1
1.	The Cartesian coordinate system attached to the reference fixed body is called a ————.
2.	Length contraction occurs only along the — of motion.
3.	The nuclear magnetic resonance is in the frequency region.
4.	Linear molecules are molecules in which ———————————————————————————————————
	Bunch II
5.	An inertial frame of reference is one in which a body moves with ——— velocity.
6.	Twin paradox is associated with ———
7.	The Zeeman effect is a clear confirmation of ———— quantization
8.	Water — and vinyl chloride molecule are — top molecule.
	Bunch III
9.	The negative result of ———— experiment was the failure to observe any fringe shift.
10.	The band spectrum has a number of ———— of different colors separated by regions
11.	The magnitude of the angular momentum is an ———— multiple of $(h/2\pi)$
12.	Raman scattering is due to collision between the ———————————————————————————————————
	Bunch IV
13.	Simultaneity is not an ———— concept, but is a relative concept.
14.	Incandescent gases and vapors of elements produce ————————————————————————————————————
15.	The magnetic moment of the silver atom was found to be equal to a magneton.
16.	The vibrational energy levels of a molecule are equally spaced.
	$(4 \times 1 = 4)$

Turn over

Part B (Short Answer Questions)

Answer five questions. Weight 1 each.

- 17. What is an inertial frame of reference?
- 18. Write down Lorentz transformation equations.
- 19. Explain time dilation.
- 20. What is exclusion principle? Explain.
- 21. Briefly explain LS coupling.
- 22. What is ESR?
- 23. Differentiate between phosphorescence and fluorescence.
- 24. What is Raman Effect?

 $(5 \times 1 = 5)$

Part C (Short essay / problems)

Answer four questions. Weight 2 each.

- 25. Calculate the length of a rod of length one meter moving with a speed of 2.5 × 108 ms⁻¹.
- 26. What is the mean life of a meson travelling with a velocity 70% of the velocity of light. The proper mean life time is 2.2×10^{-8} s.
- 27. Calculate the energy of a gamma ray produced when an electron positron pair gets annihilated. The mass of the electron is 9.1×10^{-31} kg and $c = 3 \times 10^{8}$ ms-1.
- 28. The moment of inertia of CO molecule is 1. 46 × 10-46 kg m2. Calculate the energy in eV.
- 29. The energy of a particular state of an atom is 5.36 eV and the energy of another state is 3.45 eV. Find the wavelength of the light emitted when the atom makes a transition from one state to the other.
- 30. The rotational spectrum of ⁷⁹Br¹⁹ F shows a series of equidistant lines 0.71433 cm⁻¹ apart. Calculate the rotational constant B and hence the moment of inertia and bond length of the molecule.

 $(4 \times 2 = 8)$

Part D (Essay)

Answer two questions. Weight 4 each.

- 31. Describe Michelson-Morley experiment and explain the results.
- 32. Deduce mass velocity relation, considering the variation of mass with velocity.
- 33. Describe the theory and working of a double beam spectrometer for the infrared investigation.

 $(2 \times 4 = 8)$