-	-	and.	-	-
180.00		-	=	m.
10.7	-	-		- AL
-Bred	-	ູ	v	

(Pages: 2)

Reg.	No
Nom	9

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Core Course—RELATIVITY AND SPECTROSCOPY

(Common for Model I B.Sc. Physics, Model II B.Sc. Physics, B.Sc. Physics EEM and B.Sc. Physics Instrumentation)

[2013 Admissions]

Time: Three Hours

Maximum: 60 Marks

Part A

Answer all questions.

Each question carries 1 mark.

- 1. A frame in which Newton's laws holds good is an frame.
- If the two frames are inertial, then the transformation equations are called transformation equations.
- All and rotating frames are non-inertial.
- Solar spectrum is an absorption ——— spectrum.
- 5. The orbital angular momentum is given by in vector atom model.
- In heavy atoms ———— coupling is observed.
- 7. The ---- rotational spectra are in the microwave and infrared regions.
- Pure spectra are observed in liquids.

 $(8 \times 1 = 8)$

Part B

Answer any six questions.

Each question carries 2 marks.

- 9. Differentiate between Inertial and Non-inertial frames.
- 10. State the postulates of STR.
- 11. Explain length contraction.
- 12. What is twin paradox?
- 13. Give the conclusions of Stern-Gerlach experiment.
- 14. What is LS coupling?
- 15. State the theory of ESR.
- 16. What is Raman effect?

Turn over

- 17. Explain Fluorescence.
- 18. What is rotational quantum number?

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. Arrive at the relativistic laws of addition of velocities.
- 20. A metro of eight compartments each of length 7 m. speeds at 30 m/s. Determine its contraction.
- In the M-M experiment the effective length of each path is 12 m, and the light has 600 nm wavelength. Find the expected fringe shift.
- 22. In the spectrum of HCl molecule the first line falls at 20.68⁻¹. Calculate the moment of inertia, reduced mass and the bond length of the molecule.
- 23. Bring out the fine structure of sodium D-lines.
- 24. Describe IR spectrometer arrangement due to Wadsworth.

 $(4 \times 4 = 16)$

Part D

Answer any two questions.

Each question carries 12 marks.

- 25. Obtain the mass energy relation.
- Describe vector atom model with salient features.
- 27. Discuss the theory of normal Zeeman effect with experimental setup.
- 28. Discuss vibration rotation spectrum of a diatomic molecule taking it as a harmonic oscillator.

 $(2 \times 12 = 24)$