

QP CODE: 19101733

Reg No	:	•••••
Name	:	

B.Sc. DEGREE (CBCS) EXAMINATION, MAY 2019

Second Semester

Complementary Course - PH2CMT01 - PHYSICS-MECHANICS AND ASTROPHYSICS

(Common for B.Sc Mathematics Model I, B.Sc Statistics Model I)

2017 ADMISSION ONWARDS

DDA8C4C3

Maximum Marks: 60 Time: 3 Hours

Part A

Answer any ten questions.

Each question carries 1 mark.

- 1. What is meant by velocity? Give its unit.
- 2. What is the basic principle of Kater's pendulum?
- 3. Define angular acceleration. Give its unit.
- 4. If the radius of earth become double of its present value keeping mass as constant, what will be the length of a day?
- 5. Discuss any two applications of the flywheel.
- 6. Give the expression for total energy of simple harmonic motion.
- 7. State the differential equation of damped harmonic oscillator.
- 8. Define wave number and write the expression connecting wave number and wavelength.
- 9. Differentiate between progressive and stationary wave.
- 10. Mention the uses of beats.
- 11. What is an HR diagram?
- 12. What do you mean by the term nebula? What is its content?

 $(10 \times 1 = 10)$

Part B

Answer any **six** questions.

Each question carries 5 marks.

13. Show that the centre of suspension and centre of oscillation of a compound pendulum are interchangeable.

Page 1/2 Turn Over

- 14. An object moves round a circular track of radius 4m. The object makes one revolution in 10s. Determine (i) the speed of the car and (ii) its centripetal acceleration.
- 15. A small disc of 2cm radius is removed from a large disc of radius 8cm. The centre of the hole so formed is at a distance of 2cm from the centre of the large disc. The mass of the remaining disc is 180gm. Calculate it's M.I about an axis passing through the two centers.
- 16. A sphere of uniform density 5520 kg/m3and radius 6400 km, calculate the moment of inertia about its axis through its diameter.
- 17. A body executing Simple Harmonic Motion has velocities 80 cm/s and 60 cm/s when displacements are 3 cm and 4 cm respectively. Calculate the amplitude of vibration and the time taken to travel 2.5 cm from positive extremity of the oscillation.
- 18. A particle executing simple harmonic motion, has angular frequency 6.28 s-1 and amplitude 10 cm. Find (a) the time period, (b) the maximum speed, (c) the maximum acceleration, (d) the speed when the displacement is 6 cm from the mean position assuming that the motion starts from rest at t = 0.
- 19. A train standing in a station yard blows a whistle of frequency 400 Hz in still air. A wind starts blowing in the direction from the yard to the station with a speed of 10 m/s. What are the frequency, wavelength and speed of sound for an observer standing at station platform?
- 20. What is a white dwarf and how is it formed?
- 21. Calculate the magnitude difference between two celestial objects having their brightness in the ratio 100.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 10 marks.

- 22. Obtain the expression for the moment of inertia of a thin circular disc about an axis

 (a) perpendicular to the plane and passing through the center of mass and

 (b) diameter
- 23. Derive an expression for the M.I of a solid cylinder about an axis perpendicular to its length and passing through its centre
- 24. Set up the differential equation of a simple harmonic oscillator. Solve the equation to get expressions for acceleration, velocity, period and displacement.
- 25. Write short note on:
 - (a) magnitude of stars (b) temperature and color of a star (c) stellar spectra (d) mass and luminosity of a star.

 $(2 \times 10 = 20)$

