E 6499

(Pages	:	2

Reg.	No

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2017

Second Semester

Core Course-MECHANICS AND PROPERTIES OF MATTER

[Common for the programme B.Sc. Physics (Model I) B.Sc. Physics (Model II) B.Sc. Physics EEM, B.Sc. Physics Instrumentation]

(2013 Admission enwards)

Time: Three Hours

Maximum Marks: 60

Part A (Very Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

- State the principle of Kater's pendulum.
- 2. Explain perpendicular axis theorem.
- 3. What is over damping?
- 4. Explain Doppler Effect.
- Give the significance of cantilever method.
- What are torsional oscillations? Explain.
- 7. State the factors affecting the surface tension of a liquid.
- 8. What are the characteristics of lubricants?

 $(8 \times 1 = 8)$

Part B

Answer any six questions.

Each question carries 2 marks.

- 9. What is a seconds pendulum? Explain.
- 10. Explain the principle of flywheel.
- 11. Bring out resonance in sound with an example.
- 12. Explain the theory of superposition of waves.
- Differentiate between periodic and oscillatory motions.
- 14. What is uniform bending? Illustrate.
- 15. Explain couple per unit twist for torsional oscillations.

Turn over

- 16. Briefly explain the molecular theory of surface tension.
- 17. Why do you find cloud particles floating in the sky? Explain.
- 18. Express Stoke's formula.

 $(6 \times 2 = 12)$

Part C

Answer any four questions. Each question carries 4 marks.

- 19. The length between the knife edges of a Kater's pendulum is 89.28 cm, while the times of oscillation about the two edges are 1.920 s and 1.933 s respectively. Calculate the value of g if the centre of gravity of the pendulum is about 54.4 cm from one edge.
- 20. A uniform torque applied on a fly wheel of moment of inertia 5 kg m² rotates it at the rate of 100 revolutions per minute. What is the work done by the torque?
- 21. An under damped oscillator has its amplitude reduced to one over ten of its initial value after 100 oscillations. If the period is 2 seconds calculate the damping constant and decay modulus.
- 22. Plane progressive harmonic sound wave of frequency 256 Hz and amplitude 10⁻⁵m are propagating in air of density 1.293 kgm⁻³ with velocity 348 m/s. Find the average energy density.
- 28. A uniform rod of length 1.2 m and radius one cm. is clamped horizontally at one end. A weight of 0.2 kg is attached to the free end. Find the depression at the free end.
- 24. In an experiment with Poiseulle's apparatus the following figures were obtained. Calculate the rate at which the water is escaping. Volume of water flowing per minute = 7.08. Water head = 34.1 cm. Radius of the tube = 0.0514 cm, calculate the coefficient of viscosity.

 $(4 \times 4 = 16)$

Part D

Answer any two questions. Each question carries 12 marks.

- 25. Derive an expression for period of a compound pendulum and show that the centre of suspension and centre of oscillation can be interchanged. How do you measure the acceleration due gravity with a compound pendulum?
- 26. Set up the differential equation for forced harmonic oscillator and solve it. Hence arrive at the condition for resonance.
- Deduce the relation for the depression at the middle of a uniform beam loaded at the centre and supported at the ends.
- Derive Stoke's formula for the velocity of a sphere falling through a viscous liquid. Explain how this is utilised to determine the viscosity of a liquid like castor oil.

 $(2 \times 12 = 24)$